Toro Ag Owner's Manual

Third Edition: English and Metric Units

Count on it.

Toro Ag Owner's Manual

Third Edition: English and Metric Units

Written by Inge Bisconer Toro Ag El Cajon, CA

First Edition January 2010 Second Edition October 2011 Third Edition April 2018 © 2018 The Toro Company

ACKNOWLEDGEMENTS

The author wishes to thank the many members of Toro's sales, marketing, engineering, illustration and management staff for their invaluable assistance in creating this document.

Table of Contents

Inti	oduction
1	Drip Irrigation System Overview
1.1	System Design7
1.2	Important Tips for System Components
2	Starting Up Your System14
2.1	Flush, Pressurize, Test and Adjust the System 15
2.2	Connect Lateral Lines to Submains
2.3	Test System Operation and Backfill Trenches 19
2.4	Establish Baseline Readings
3	Basic System Operation26
3.1	Monitor Key Operating Parameters
3.2	Irrigation Scheduling
	A. Using the Water Balance Method
	B. Additional Considerations
	C. Monitoring Equipment
	D. Run-Time Calculators for Permanent
	and Row Crops61
4	Fertigation and Chemigation66
4.1	Plant/Soil/Water Relationships67
	A. Water Analysis and Interpretation
	B. Soil Analysis and Interpretation72
	C. Plant Analysis and Interpretation

4.2	General Chemical Injection Guidelines	76
4.3	Chemical Injection Equipment	80
4.4	Chemical Injection Formulas	82
5	Salinity Management	86
6	System Maintenance	90
6.1	Apply Chemicals	92
6.2	Flush the System	95
6.3	Control Pests	97
6.4	Service the Filtration System	99
6.5	Service the Accessory Equipment	100
6.6	Winterize the System	100
6.7	Startup Procedures	100
7	Maximizing Your Investment	102
		100
R	References	108
		110
A	Appendix	112
	CIMIS Evapotranspiration	114
	Sedimentation Test/Determine Soil Textu	re115
	Conversion Factors	119
	Blank Worksheets	123
S	System Information	

Congratulations!

You have installed the most advanced method of irrigation known, a quality drip irrigation system from Toro. The drip system you've installed is an excellent investment. In fact, it can be the essential factor that integrates your crop, soil, nutrients and water for optimal results. This manual will help you take full advantage of the precise, efficient, and practical benefits of a drip irrigation system, so it will deliver the most value. Properly operated and maintained, a drip system will pay for itself quickly and last for many years.

Long-Term Benefits

Intelligent irrigation is the precise, efficient and practical method of delivering water to crops that allows growers to maximize profitability and minimize the use of resources. With drip, many growers have successfully increased crop yield and/or quality to **increase income**, while at the same time **reduced the costs** of water, fertilizer, energy, labor, weed control, chemical applications, equipment usage and insurance.

This increase in income and reduction of costs often offsets the irrigation equipment investment quickly, thus allowing growers to enjoy **higher profitability** with the investment in drip irrigation. Field accessibility is often improved, too, along with the ability to farm odd-shaped fields. In most cases, the environmental problems associated with irrigation water runoff, deep percolation, evaporation or wind drift are substantially reduced or eliminated, and wildlife may be enhanced since habitat is not routinely flooded. Whatever the motivation, drip irrigation offers numerous benefits and warrants a commitment to proper operation and maintenance.

Learn how drip is different to ease the learning curve.

Drip Is Different

Drip is different from sprinkler and gravity irrigation, and should be managed differently to maximize its benefits and avoid problems. For instance, drip irrigation is typically used to **maintain** moisture, whereas sprinkler and gravity irrigation may be used to **replace** depleted moisture. The chart on the facing page summarizes the main differences.

Note that both English and Metric units are shown in charts, graphs, equations and examples. Where possible, the metric unit equations and examples have been shaded to ease differentiation.

4

Comparing Drip, Sp	ninkier and Grav	ity imgation sys	leme
System Attribute	Drip	Sprinkler	Gravity
Emission device flow rate	GPH (LPH)	GPM (LPM)	N/A
Operating pressure	4–60 psi (0.3–4 Bar)	30–90 psi (2–6 Bar)	Low
Duration of irrigation	Secs, Mins, or Hrs	Minutes	Hours, Days
Frequency of irrigation	Daily	Weekly	Monthly
Level of filtration required	120–200 mesh	20–80 mesh	None
Wetting patterns	0.5–4 feet (0.15–1.2 meters)	5–100 feet (1.5–30 meters)	Broadcast
System application rates	Excellent (low-med)	Moderate (medium)	Poor (high)
Typical system uniformity	Excellent	Moderate	Poor
 Ability to avoid wetting non-targeted areas 	Excellent	Poor	Poor
• Ability to avoid weed germination and irrigation	Excellent	Poor	Poor
Ability to avoid runoff, deep percolation, and wind drift	Excellent	Moderate	Poor
 Ability to avoid foliage wetting and increased humidity associated with diseases 	Excellent	Poor	Poor
 Ability to automate the delivery of water and nutrients 	Excellent	Poor	Poor
Ability to spoon feed nutrients via fertigation	Excellent	Poor	Poor
 Ability to reduce irrigation and weed control labor costs 	Excellent	Excellent – Moderate	Poor
Ability to reduce energy costs	Moderate	Poor	Moderate
Ability to allow field access during irrigation	Excellent	Poor	Poor
Ability to avoid insurance costs	Excellent	Poor	Excellent

DRIP IRRIGATION SYSTEM OVERVIEW

- 1.1 System Design
- 1.2 Important Tips for System Components
 - Water Source, Pump, Backflow Prevention, Filtration System, Chemigation System, Flow Meters and Pressure Gauges, Control Valves, Air/Vacuum Relief Valves, Automation Equipment, Pipelines and Fittings, Emission Devices

1.1 System Design

Designing a drip irrigation system can be complex. Toro Irrigation's companion document, The Toro Ag Design Manual, covers all aspects of design (including plant/soil/water relationships, water treatment, hydraulic theory and pumps) as well as some information regarding installation, operation and maintenance. Below is a summary of important issues that should have been considered during the design and selection process.

It's best to review these issues with the design engineer before and after system design, installation and purchase to ensure that the system operates properly and performs to your expectations.

Review your system with the designer, both before and after your purchase.

Drip Irrigation	System Design Stage Checklist 🖌
✓ System Life	Expected system life will influence the type and quality of system components. Systems may last well over 10 or even 20 years if high quality and well maintained.
✓ System Uniformity	Expected irrigation uniformity will also influence the type and quality of system components. Drip systems routinely operate at over 90% uniformity if high-quality components are chosen and well maintained.
✓ Water Analysis	Find out what's in the water before the system is designed and built. Water quality will dictate filtration, emission device selec- tion and chemigation, and may change seasonally or with heavy pumping.
✓ Soil Analysis	Find out the soil type such that an emission device with the right flow rate, spacing and application rate may be chosen, and so that any soil physical or chemical problems may be addressed at the design stage.
Crop Information	The designer should know the cost and quantity of water and fertilizer that will be needed to grow the crop(s), as well as the cultural practices and planting dimensions.
Pump Test	If a pump is already present, get a pump performance curve to make sure it runs efficiently at the desired flow and pressure.
Site Information	The designer should have access to topographic, weather, water, fuel, and other infrastructure information.
🗹 Labor	Cost and availability of labor is an important element of equipment selection and decisions regarding automation.
Expansion	Small adjustments in the current design will ease future system expansions, if any.
Maintenance	The designer should make provisions for the safe and effective injection of all chemicals that will be used including fertilizers, acid and chlorine. In addition, the designer should ensure the system may be properly flushed.
Automation	If system automation is desired initially, or even later, it should be known at the time of design.
Monitoring	Basic flow and pressure monitoring equipment should always be specified. If additional soil, weather or plant monitoring equipment will be used, integration with the irrigation control equipment should be considered.

8

1.2 Important Tips for System Components

Drip irrigation systems are unique because much of the system is buried. As the Typical Drip System Layout illustration shows, the water sources, pumps, filters, chemical injection equipment and controls are clearly visible, while little of the "field" portion of the system is seen. This is true for field crop sub-surface drip irrigation (SDI), short-term vegetable crop, longer-term vegetable crop, vineyard and orchard irrigation. Here's what you need to know about the principal components, along with a brief description of each component's role in the system. Your system probably has many of these components.

Water Source

Water quality influences many aspects of irrigation including filtration, wetting patterns, fertilizer compatibility and plant growth. Although clean, potable water supplied by a water district is occasionally used to irrigate crops, irrigation water is more likely to come from a surface river, stream, lake or canal, or from the groundwater by drilling a well. Depending on the water quality, a reservoir or a screen, disc and/or

Know what's in your water and how conditions may change during the course of the season. sand media filtration system must be used to remove sand, algae and other contaminants that could clog the drip irrigation system. If certain minerals are present, or if the pH isn't right, chemical treatment may be required as well. Even if you didn't obtain a Water Quality Analysis prior to installing the system, it's never too late. Obtaining one will provide immediate help with important drip irrigation management decisions. **See Chapter 4 for more about water testing and analysis.** It takes 27,154 gallons (250,000 liters) of water to equal one acre-inch (25 mm/ha) of water, so pumping efficiency is essential for energy savings.

Pump

Make sure your pump is adequate and efficient for the flow and pressure conditions. Unless water is pressurized at the source, a pump will be needed to push water through the pipes and emission devices. Vertical turbine pumps are typically used on wells, and centrifugal pumps are used for surface water supplies. Obtain a performance curve for your pump and have changes made if it isn't right — the energy savings alone will easily pay for any upgrades you might have to make, which will also improve system operation and, ultimately, crop production.

Backflow Prevention

Prevent irrigation water and/or chemicals from accidentally contaminating the water supply with a backflow prevention device. The many different backflow prevention system types may include flow sensors and interlocking electrical connections that shut down both the irrigation and chemigation pump should a failure in either system occur. This prevents chemicals from entering the water source as well as from entering the irrigation system when it is not operating properly. Backflow prevention is important, recommended and in some areas required by law.

Filtration System

Good filtration is essential for proper system operation and long-term performance. Filters are commonly used to remove sand, silt, precipitated minerals and organic matter so that irrigation water will

Backflushing the filters is crucial to system performance.

not clog the emission devices. Water quality and emission device specifications will determine the filtration type, level and quantity, but most drip systems require from 120–200 mesh filtration. Irrigation filters will NOT remove salt, dissolved solids or other toxic elements, nor will they adjust the water pH. Even if potable water is used, a basic screen filter is still required to remove sand and minerals. For good filtration, filters must be backflushed when they become dirty.

Chemigation System

If you use a chemigation system, make sure the injected chemical will not clog or otherwise damage the irrigation system. Prior to chemigation, a simple "jar test" should be conducted and/or a compatibility chart consulted. Chemical injectors deliver nutrients to the plants with the water and also apply system maintenance chemicals such as acid, chlorine or other line cleaners. Some systems use a separate pump, and others use a venturi-type device that uses a pressure differential in the circuit to create suction pressure in tubes connected to the chemical tanks. See Chapter 4 for jar test instructions.

Flow Meters and Pressure Gauges

Make sure your system has a flow meter and pressure gauges that work! Although simple and relatively inexpensive, these gauges are often overlooked or not maintained. These monitoring devices are essential to proper system operation. System flow rate helps detect leaks or clogging, and must be known to determine the application rate for irrigation scheduling purposes. System pressure also helps detect leaks or clogging, and is essential for managing filters, chemical injectors and the system operating window.

10

Control Valves

Control valves must be properly "set" to achieve proper system flow and pressure. Sometimes simple ball or butterfly valves are used, but often the system uses sophisticated flow and pressure regulating valves. Larger valves control flow from the pump to the filters and then to the field, and sometimes a valve will reduce field flow to enhance filter backflush. Zone valves control which blocks receive water, and flush valves at the ends of all system pipelines allow the system to be purged of impurities. Although valves are typically operated by hand, many are now automated.

Negative suction pressure can cause serious clogging problems.

Air/Vacuum Relief (AVR) Valves

AVR valves help prevent negative suction pressure, which can cause serious clogging problems — especially if laterals are buried or in constant contact with settled soil. AVR valves are commonly installed at high points and at the end of irrigation pipelines — including supply lines, mainlines, submains and control risers — to let air escape when pipelines are filling, to allow air to enter when pipelines are draining, to remove air pockets at system high points caused by entrained or dissolved air, and to

prevent negative suction pressure in laterals after system shutdown. In most cases, clogging from vacuum suction may be prevented by properly installing vacuum relief valves on the lateral inlet, high point and outlet submains, or by installing flush valves at the end of each lateral for vacuum relief.

Automation Equipment

Automation equipment consisting of controllers, valves and/or sensors can help maximize drip irrigation system benefits. Many systems incorporate a controller that communicates with valves and sensors via wires or via wireless devices. The user typically programs the controller to turn valves on and off at desired times. Since most controllers allow sensor input as well, systems may also be automated according to weather, soil or system conditions. Note that systems capable of automation may also be operated manually.

Pipelines and Fittings

It's important that all pipelines and fittings are properly sized to withstand maximum operating pressures and convey water without excessive pressure loss or gain. Pipelines carry water from the

pump to the filters, valves and emission devices. PVC pipe may be used throughout the system or combined with steel at the pump station, flexible PVC or polyethylene (PE) layflat for submains, and polyethylene hose or drip tape for laterals. Be sure to consider the expansion and contraction that occurs under normal outdoor operating conditions, and make sure pipelines are properly secured, thrustblocked and connected to one another with welds, glue or friction fittings. PVC pipe and fittings should be cleaned, deburred and primed before gluing. Because much of the pipeline is buried and difficult to access and repair, especially after crop growth, making sure fittings are secure at installation can save significant repair issues later.

Prevent potential crop damage from a system shutdown by pressure-testing pipelines early.

Emission Devices

Emission devices must be selected and installed with the utmost care because problems are difficult to solve — solving problems is difficult since there are literally hundreds or thousands of emission devices in a typical system. Emission devices deliver water and nutrients directly to the plant root zone as shown in the illustration below. Drip tape and dripline will have built-in emission devices, and polyethylene hose will have emitters, jets or micro-sprinklers attached. Quality is essential, since a typical drip system includes hundreds or even thousands of emission devices. Each device should be durable, resistant to clogging, and emit the same amount of water even under variable pressures. In addition to quality, the flow rate and spacing of the emission device is important in determining the wetting pattern as well as the likelihood of having runoff or deep percolation problems. The illustration below (Mikkelsen, 2009) shows how a well managed drip system provides water and nutrients to the crop rootzone without runoff or deep percolation. Emission devices of poor quality may require more maintenance, not provide optimum irrigation efficiency, and need replacement far earlier than a quality device. Simply put, this is no area to try to cut costs — quality is essential. At a minimum, emission devices should have a low manufacturing coefficient of variation (CV), the irrigation system should have a high design Emission Uniformity (EU), and all components should have a good warranty, backed by a company that can be trusted.

Main Toro Components

Aqua-Traxx with the PBX Advantage Premium Drip Tape

Flow Control Premium Drip Tape

Neptune Flat Emitter Dripline

12

BlueLine Classic and BlueLine PC Dripline

Blue Stripe Hose

Blue Stripe Oval Hose

Layflat Discharge Hose

Pro-Loc (pictured), Poux, XPando, Loc-Eze and Ring-Loc Fittings

Turbo-key, Turbo-SC Plus, NGE SF, NGE AL (pictured), and E2 Online Emitters

MC-E Series Irrigation Controller

Evo Ag Irrigation Controller

Micro-Sprinkler VI Classic and Micro-Sprinkler PC

Mazzei Injectors

Aqua-Clear Fiberglass Sand Filters XD Filters and F Series Plastic Filters

Bermad Valves

Toro and Irritrol (pictured) Valves

STARTING UP YOUR SYSTEM

- 2.1 Flush, Pressurize, Test and Adjust the System
- 2.2 Connect Lateral Lines to Submains
- 2.3 Test System Operation and Backfill Trenches
- 2.4 Establish Baseline Readings

Starting Up Your System

Properly designed, installed, operated and maintained drip irrigation systems may last indefinitely. However, drip systems are vulnerable to over-pressurization and clogging, both of which can drastically reduce the system's life and performance. The following step-by-step guide shows how the system should be initially pressurized and tuned, and how it should be routinely operated and monitored for optimal performance. Note: It is assumed that the system has been completely installed and pipelines have been partially backfilled, but that lateral lines have NOT been connected to the submains yet.

2.1 Flush, Pressurize, Test and Adjust the System

- a. Open all control and flush valves.
- b. Close all submain control valves.
- c. Turn on the pump and slowly fill and flush the mainlines, allowing air to exit the system through the air-relief valves. If necessary, divert the flush water from the flush valves.
- d. Once the mainlines have been thoroughly flushed, close the mainline flush valves and bring the mainline up to test pressure.
- e. Maintain test pressure for 24 hours. If leaks develop in the mainline, immediately shut off the system, repair leaks, flush the mainline again, and repeat the pressure test.
- f. After the mainline has been flushed and passes the pressure test, flush the submains until clean by opening the submain control and flush valves. Again, divert the submain flush water if necessary.

Pressure testing is essential!

- g. After the submains are thoroughly flushed, adjust the submain block control valves so that downstream pressure will not exceed the maximum pressure rating of the lateral lines that will be connected after the flush valves are closed. Thin-walled tape products may have a maximum pressure rating of 10 psi (0.7 Bar), while thick-walled polyethylene hose or dripline products typically withstand 50 psi (3.5 Bar) or more.
- h. While the submains are flushing, make sure the filters are working properly, and that they have been thoroughly backflushed.

If a backflush controller is used, set the pressure differential point at which the filter will automatically backflush. Depending on the filter make and model, inlet and outlet pressures should differ about 2-3 psi (0.1 - 0.2 Bar) when the filters are clean, and about 10 psi (0.7 Bar) when the filters are dirty and should

Automating the backflush function is highly recommended. be backflushed. If a controller is not being used, these gauges must be monitored often so that manual backflush is performed before the filters become fouled. Variables in gauge readings and elevation differences should be taken into account. **Remember that 2.31 feet of elevation equals 1 psi (0.07 Bar). Similarly, one meter of elevation equals 0.1 Bar.**

The valve controlling the volume of flush water exiting the sand media filter drain line during backflush must be carefully set. The valve must maintain enough backpressure on the filters during backflush to prevent sand from

exiting the filter tanks. At the same time, the valve must allow enough volume to exit the filters so that the sand bed is adequately lifted and cleansed. The valve is set properly when minute quantities of sand begin to appear in the flush water.

i. After the submain block valves and filter valves have been properly set, close the submain flush valves and pressurize the submain to test pressure for a period of time. If there are leaks, shut the system off, make repairs, and repeat the pressure test.

2.2 Connect Lateral Lines to Submains

- a. After the submains have been successfully flushed and pressure tested, open the submain flush valves and the ends of all lateral lines for flushing after connection. If the lateral lines are plumbed into a flushing submain, open the flushing submain flush valves.
- b. Connect the lateral lines to the submain, and flush the lateral lines until clean. If necessary, close the submain flush valves to achieve adequate flushing volume on the laterals.
- c. After the lateral lines have been flushed clean, close all submain and lateral flush valves and allow the system to stabilize at operating pressure.
- d. Re-adjust all submain block valves as necessary to conform to design pressure specifications, taking care to not exceed the maximum pressure rating of the lateral lines.

Don't overpressurize or clog emission devices. 16

It's extremely important that the laterals are connected properly to the submains to prevent leaks, kinking or clogging. Holes must be drilled correctly with care taken to remove shavings and burrs. Also note the variety of lateral end connections that are available to help facilitate flushing, whether automatically or manually. Although end-of-line flush valves or flushing submains are more costly, they greatly enhance the irrigator's ability to easily flush laterals manually as opposed to closing each lateral with a figure 8, a threaded cap, a valve or, in the case of tape, tying a knot.

The following pictures show actual field applications.

The following illustrations show how tape, hose or dripline laterals may be connected to polyethylene oval hose, flexible PVC layflat, or rigid PVC supply or flushing submains. The initial cost of some options are more expensive than others, but in exchange enhanced performance, durability and longevity are delivered. Since some operations such as lateral flushing may occur frequently, the cost of operational labor must be factored into the connection type decision as well.

Flexible Polyethylene Oval Hose

The six illustrations below show how oval hose is punched and then connected to tape laterals via spaghetti tubing or barbed connectors of various sizes. Note that the bottom left illustration shows Toro's Pro-Loc fitting with a valve option that facilitates control of individual laterals from the oval hose submain.

Flexible PVC Layflat

This submain material is very popular because it collapses easily for portability. A more secure tear-drop shaped fitting may be used to connect the layflat to the tape laterals as shown in the first four illustrations below. In addition, as with oval hose, spaghetti tubing may be inserted into a hole as well.

Rigid PVC Pipe

Rigid PVC is typically used to connect laterals in permanent crops and in subsurface drip irrigation systems. Since the pipeline is usually buried, it is important that the fittings are reliably secure and that transition tubing does not bend or crimp to obstruct water flow. Toro's Xpando Take-Off and Pro-Loc fittings are the perfect solution, providing transitions from PVC pipe to polyethylene transition tubing, and transitions from polyethylene tubing to drip tape, hose or dripline laterals.

Lateral Couplings

The following illustrations show how tape and hose/dripline are coupled in the field with Pro-Loc tape and dripline fittings, or with wiretie and blank tubing.

18

Lateral Ends

Hose, dripline and tape lateral ends may be closed with a variety of fittings including with a Pro-Loc shut-off valve fitting, with a figure-8 fitting (for hose only), with a Pro-Loc flush valve fitting, with a wiretie fitted to rigid hose, or with a "napkin ring" (tape only).

2.3 Test System Operation and Backfill Trenches

System connections, flushing, pressure testing and pressure setting have now been completed. Once you've determined that all underground components, including pipes, fittings, control wires and tubing, are working properly, backfill the trenches. Care must be taken during backfilling to prevent collapse or other damage to the pipe, particularly with large, thin wall pipe. Note that open trenches can pose a danger and should be protected prior to backfilling. In some cases, backfilling prior to pressure checking may be warranted.

2.4 Establish Baseline Readings

Because significant portions of drip systems are buried and can't be easily viewed, pressure gauges and flow meters are key to diagnosing problems and checking operating status. After the system has been connected, flushed and pressure-tested with control valves properly set — and it's been verified that all underground components are working properly — take the following baseline readings:

Compare baseline readings with design specs. 20

- **Record readings from all pressure and flow gauges**, including before and after pumps, filters, main and submain control valves, tape inlets and tape outlets.
- Examine the condition of filter flush water to verify that the backflush valve has been properly set.
- Examine block tape flush water by capturing water in a jar to make sure a clogging hazard doesn't exist.

These readings should be used to verify that the system conforms to design specifications, and should serve as operational benchmarks in the future. The flow meter reading should also be used to determine and/or verify the application rate for future irrigation scheduling calculations (discussed in Section 3.2).

The following pictures show where some of the readings should be taken.

	SDI Baseline Readings Data Collection Sheet													
			System Flow Rate	Pump Pressure	Filter Inlet Pressure	Filter Outlet Pressure	Mainline Control Valve Outlet Pressure	Appearance of Filter Outlet Flush Water	nce <u>Block Valve #</u> Outlet Block Valve Block Valve Ta ater Inlet Pressure Outlet Pressure Pr			ape Inlet Tape Outlet ressure Pressure		
	Exam /alue suppl desig	ple: Target of reading ied by n engineer:	400 GPM (100 m³/hr)	40 psi (3.0 Bar)	38 psi (2.9 Bar)	30–37 psi (2.0 - 2.5 Bar)	28 psi (1.9 Bar)	No sand, clear after backflush	18–23 psi (1.2 - 1.5 Bar)	15 psi (1.0 Bar)	12—14 psi (0.8-0.9 Bar)	4 psi (0.3 Bar)	Clear	
	mme after	ediately purchase:												
		Week 1												
		Week 2												
		Week 3												
	SQ	Week 4												
	Ē	Week 5												
	ac	Week 6												
	2	Week 7												
Ľ	la	Week 8												
	ียี	Week 9												
Ľ	₹	Week 10												
		Week 11												
		Week 12												
L		Week 13												

To assist in data collection, the following template may be used:

	SDI Block Valve Baseline Readings													
			Block Valve #			Appearance								
		Block Valve Inlet Pressure	Block Valve Outlet Pressure	Tape Inlet Pressure	Tape Outlet Pressure	of Tape Flush Water								
Exan value supp desig	n ple: Target e of reading lied by In engineer:	18–23 psi (1.2 - 1.5 Bar)	15 psi (1.0 Bar)	12–14 psi (0.8 - 0.9 Bar)	4 psi (0.3 Bar)	Clear								
lmm after	ediately purchase:													
	Week 1													
	Week 2													
	Week 3													
sõ	Week 4													
din	Week 5													
ea	Week 6													
Ř	Week 7													
na	Week 8													
t	Week 9													
	Week 10													
	Week 11													
	Week 12													
	Week 13													

SDI Block Valve Baseline Readings

			Block Valve #			Appearance
		Block Valve Inlet Pressure	Block Valve Outlet Pressure	Tape Inlet Pressure	Tape Outlet Pressure	of Tape Flush Water
Exar value supp desig	nple: Target e of reading Ilied by gn engineer:	18–23 psi (1.2 - 1.5 Bar)	15 psi (1.0 Bar)	12—14 psi (0.8 - 0.9 Bar)	4 psi (0.3 Bar)	Clear
lmm after	ediately purchase:					
	Week 1					
	Week 2					
	Week 3					
S	Week 4					
l if	Week 5					
l a	Week 6					
l e	Week 7					
len	Week 8					
E E	Week 9					
	Week 10					
	Week 11					
	Week 12					
	Week 13					

22

When to Take Readings

As a general rule, baseline readings and subsequent monitoring should occur after the system pressure and flow have stabilized. The system should be filled slowly so that air has plenty of time to escape through the air-relief valves and to prevent water hammer on the filters, valves and critical pipe fittings. A manually operated butterfly valve, generally pre-set or automated to facilitate a slow fill, is often placed downstream of the pump prior to the filters to help regulate fill-up flow.

How to Determine Stabilization Time

The following calculations will help you determine how long the system must operate before pressure and flow have stabilized, so the operator knows when readings may be taken. For example, if the area within all pipelines and tape will consume 5,000 gallons of water, and the system flow rate is 500 gpm, then stabilization will occur after about 10 minutes of operation. Or, if the system consumes 20 cubic meters of water, and the system flow rate is 100 m3/hr, then stabilization will occur after about 12 minutes of operation.

English Unit Equation:

1. Calculate the total volume of area within the drip tapes and conveyance pipes in cubic feet. Use the following formula:

Pipeline Volume (cubic feet) = $3.14 \times \mathbf{D}^2 / 4 \times \mathbf{L}$

Note: D = Pipeline Internal Diameter (in feet) and L = Pipeline Length (in feet)

- 2. Convert this volume to gallons by multiplying by 7.48 gallons per cubic foot.
- **3.** Compare volume with system flow rate. Divide the total volume in gallons (from Step 2) by the gallons per minute (gpm) flow rate to determine how many minutes it will take to fill the pipeline.

English Unit Example

200 feet of pipe (L) with an internal diameter of **3.284 inches (D)** would have the following internal volume **in cubic feet** (remember to convert inches to feet):

Pipeline Volume (cubic feet) =	3.14 x (3.284 inches / 12 inches/foot) ² / 4 x 200 feet
After converting inches to feet:	3.14 x (.27372) ² / 4 x 200 feet
Therefore:	3.14 x .0187 x 200 = 11.74 cubic feet

Since 7.48 gallons occupies one cubic foot of volume, the volume of water in this 200-foot section of pipeline would be: 11.74 cubic feet x 7.48 gallons per cubic foot = **88 gallons**. If the system flow rate were 10 gpm, it would take 88 gallons /10 gpm = **8.8 minutes** to fill the pipeline.

Metric Unit Equation:

1. Calculate the total volume of area within the drip tapes and conveyance pipes in cubic meters. Use the following formula:

Pipeline Volume (cubic meters) = $3.14 \times D^2 / 4 \times L$ Note: D = Pipeline Internal Diameter (in meters) and L = Pipeline Length (in meters)

2. Divide the total volume in cubic meters (Step 1) by the cubic meters per hour flow (m3/hr). Then multiply this number by 60 to determine how many minutes it will take to fill the pipeline.

Metric Unit Example:

200 meters of pipe (L) with an internal diameter of **83.4 mm (D)** would have the following internal volume **in cubic meters** (remember to convert mm to meters):

Pipeline Volume (cubic meters) = 3.14 x (83.4 mm / 1,000 mm/meter)² / 4 x 200 meters 3.14 x 0.00696 / 4 x 200 meters 3.14 x 0.00174 x 200 = 1.09 cubic meters of water

If the system flow rate were 10 m3/hr, then it would take (1.09 m3/ 10 m3/hr) x 60 minutes = 6.5 minutes to fill the pipeline.

24

Toro's educational website, DripTips.Toro.com seeks to educate and answer the question, "what is drip irrigation?" Topics include drip irrigation basics, design and installation, operation and maintenance, research and related articles, and tips and trends. What's more, as DripTips.Toro.com was specifically designed to encourage input and networking, you can register as a "Local Expert" or submit questions to our experts.

BASIC SYSTEM OPERATION

- 3.1 Monitor Key Operating Parameters
- 3.2 Irrigation Scheduling
 - A. Using the Water Balance Method
 - B. Additional Considerations
 - C. Monitoring Equipment
 - D. Run-Time Calculators for Permanent and Row Crops

Basic System Operation

Now that the system has been constructed and is operating properly, it's time to irrigate! To protect and maximize your investment, it's highly recommended that the system be monitored on a routine basis to ensure proper operation, and that irrigations are scheduled intelligently to avoid waste.

3.1 Monitor Key Operating Parameters

Once the irrigation season is under way, the system's pressures and flows should be monitored, the flush water assessed, and system integrity ensured on a routine basis.

Monitor for Differences in System Pressure and Flow

After the system has stabilized, the system's vital flow and pressure signs should be monitored and compared with the benchmark readings you recorded after initial system startup to make sure the system is operating as designed. Remember, flow and pressure are closely related, so differences from the benchmark readings may indicate:

- Wrong control equipment settings or control equipment failure
- Clogging of the filters or emission devices from inorganic, organic or mineral precipitants
- Leaks from pipe or tape failure, loose fittings, rodent or insect damage

Use the System Troubleshooting Guide shown here to help isolate the problem.

	System T	roubleshoot	ing Guide	
PUMP Outlet Pressure:	High	Low	Low	High
System Flow Meter:	High	Low	High	Low
Possible Problem and Solution:	 Pump valve is opened too wide. Pump output should be decreased. 	 Pump valve should be opened wider. Pump output should be increased. 	 There is a leak in the system. A valve is opened in error. 	 Emission devices or filters are clogged. A valve needs to be opened more. Additional zone valves need to be opened. Correct zone valves need to be opened.
FILTER Outlet Pressure:	💓 High	Low	Low	🕎 High
System Flow Meter:	High	Low	💓 High	Low
Possible Problem and Solution:	 Pump valve is opened too wide. Pump output should be decreased. 	 Filters are clogged and should be backflushed / cleaned. Pump valve should be opened wider. Pump output should be increased. 	 There is a leak in the system. A valve is opened in error. 	 Emission devices are clogged. A valve needs to be opened more. Additional zone valves need to be opened. Correct zone valves need to be opened.
BLOCK VALVE Outlet Pressure:	High	Low	Low	High
System Flow Meter:	High	Low	High	Low
Possible Problem and Solution:	 Block valve is opened too wide. Pump output should be decreased. 	 Block valve should be opened wider. Pump output should be increased. Filters are clogged and should be backflushed. 	 There is a leak in the system. A valve is opened in error. 	 Emission devices are clogged. A valve needs to be opened more.

28

In addition, these hypothetical examples show how pressure and flow rate measurement records may be used to discover and resolve operational problems (Lamm & Rogers, 2009).

Monitor Lateral Flush Water Quality

Anomaly A: The irrigator observes an abrupt flowrate increase with a small pressure reduction at the Zone inlet and a large pressure reduction at the Flushline outlet. The irrigator checks and finds rodent damage and repairs the dripline.

Anomaly B: The irrigator observes an abrupt flowrate reduction with small pressure increases at both the Zone inlet and the Flushline outlet. The irrigator checks and finds an abrupt bacterial flare-up in the driplines. He immediately chlorinates and acidifies the system to remediate the problem.

Anomaly C: The irrigator observes an abrupt flowrate decrease from the last irrigation event with the pressure reductions at both the Zone inlet and Flushline outlet. A quick inspection reveals a large filtration system pressure drop indicating the need for cleaning. Normal flowrate and pressures resume after cleaning.

Anomaly D: The irrigator observes a gradual flowrate decrease during the last four irrigation events with pressure increases at both the Zone inlet and Flushline outlet. The irrigator checks and finds that the pipelines are slowly clogging. He immediately chemically treats the system to remediate the problem.

As often as each irrigation, the ends of laterals should be opened and the contents emptied into a jar for visual inspection of water quality. When water quality begins to degrade, as shown by color, grit, organic or any solid materials in the flush water, then system maintenance should be performed. Since the ends of laterals in SDI systems are typically plumbed into a flushing submain as shown in the illustration at the bottom of page 20, the flushing submain valve must be opened and the flush water examined. If this is impractical to perform during each irrigation, another alternative is to install a Tee into the end of a tape lateral with the third leg capped at the surface for easy viewing of lateral flush water on a periodic basis.

The following pictures show how pressure, flow and flush water can be checked.

From left to right: Pressure gauge on mainline; flow meter; pressure gauge on tape; monitoring tape flush water.

Monitor for Mechanical Damage

Drip tape and polyethylene laterals are also susceptible to mechanical damage from a number of sources, including installation equipment, tillage equipment, insects, birds, rodents, excessive pressure or the lens effect of sunlight when magnified through water beneath clear plastic mulch. Tape injection equipment should be routinely inspected, and the drip system should be inspected for evidence of mechanical damage, indicated by puddles of water, squirting, loss of pressure or crop loss. When such damage occurs, pests must be controlled or managed — or equipment adjustments should be made — to avoid future problems. The following pictures illustrate the various types of mechanical damage that can occur. Note that sunlight damage from the lens effect is uncommon in SDI applications since the tubing is buried and is not subject to magnification of sunlight under clear mulch. However, SDI systems are especially susceptible to rodent damage since populations are no longer controlled with the previous irrigation or cultural practices.

Examples of Mechanical and Other Damage

Bird Damage

Equipment Damage

Equipment Damage

Excessive Pressure

Insect Damage

Insect Damage

Insect Damage

Lens Effect Damage

Rodent Damage

Rodent Damage

Rodent Damage

Rodent Damage

3.2 Irrigation Scheduling

Irrigation scheduling is the process of deciding when and for how long to run the irrigation system. It's a complex but important topic because it influences whether the crop gets the right amount of water and nutrients, whether valuable water is wasted to runoff or deep percolation, and whether salts are moved beyond the root zone.

The Hydrologic Cycle illustration (NASA, 2009) demonstrates how complex weather, soil, geography, geology and plant growth influence water movement and use. Irrigation scheduling uses both art and science to balance known facts such as soil type, system application rate and crop species with changing conditions such as weather, chemistry, stage of plant growth and farm cultural operations. On one end of the spectrum, the irrigator may make decisions by physically evaluating the moisture content in a sample of soil or visually monitoring the appearance and color of the crop. On the other hand, sophisticated instruments may be used to collect data on soil moisture, plant water stress, weather conditions and theoretical plant water use.

This figure, Transpiration (Techalive, 2009), shows the process by which plants use water as it's taken in through the roots, moves up the stem and then transpirates to the atmosphere. Researchers have generated data on this process for many crops, and it's available for growers to use. Software may also be used to interpret this information and generate scheduling recommendations for advanced applications or automated operation.

TRANSPIRATION

- 1. Water is taken in through the root hairs.
- 2. Water moves up the stem through the xylem vessels, which conduct water and minerals to the leaves.
- 3. Guard cells open, creating a pore through which water vapor can escape.
- Water vapor escapes through open stoma (singular = stomata), mainly on the undersides of leaves. (4a. Stomata, 4b. Plant Cell)

Proper scheduling maximizes profits and minimizes problems. The figure below, Irrigation Schedule Based on Soil Moisture Status (adapted from USBR, 2000, pg. 87) shows two different irrigation scheduling strategies. The first strategy (in purple) employs the use of a drip irrigation system to refill the soil profile frequently, keeping the soil at optimum moisture. The second strategy (in green) refills the profile infrequently, thus allowing approximately 50% of the available soil moisture to become depleted before refilling the profile. This schedule is typical of sprinkler irrigation systems as well as some gravity systems, and may not provide optimum moisture to the crop. Note that

the definition of "optimum moisture" may change according to crop, stage of growth, quality parameters and other variables, and may include some level of drying down, or deficit irrigation, with any type of irrigation system.

(1) Full soil reservoir

(2) Often 50% of available soil capacity

(3) Empty soil reservoir

In addition to high frequency irrigation, high frequency fertigation in trials with phosphorus and potassium also has proven higher yield results as shown in the adjacent graph (Lamm, 2007 after Phene et al., 1990).

Tomato yield and crop ET as affected by irrigation system type and fertigation of macronutrients phosphorus (P) and potassium (K) on a clay loam soil. Data from Phene et al. (1990).

In short, the irrigation manager must decide when and how long to irrigate to achieve the best results for any given crop and its unique conditions. In this manual, we will discuss the Water Balance Method and then explore additional factors affecting scheduling before creating a typical irrigation schedule based on theoretical conditions.

A. Using the Water Balance Method

The Water Balance Method assumes that the crop root zone is a water reservoir, similar to a bank account. As the crop uses water through the process of evapotranspiration (ET), water is withdrawn from the account. This water can then be replaced by rainfall or irrigation deposits. A running balance keeps track of the theoretical water level in the water reservoir, and actual field monitoring verifies the theoretical balance before final irrigation decisions are made.

How to Calculate Run Time and Schedule

At a minimum, you need to know two things to successfully calculate theoretical run time and schedule irrigations using the Water Balance Method: 1) crop water use (to determine daily water withdrawal), and 2) irrigation system net application rate (to determine how much water is applied per hour of irrigation). Both are used to calculate theoretical run time. Reference ET, Crop Coefficient and Crop Coverage Decimal data are readily available from local government and university sources, and we encourage you to use these resources for help.

The irrigation system net application rate should be supplied by the irrigation dealer at the time of purchase, but irrigation system manufacturers, consultants and extension agents can help as well. The following formulas will help calculate Theoretical Run Time, Crop Water Use and Net Application Rate.

ENGLISH UNIT EQUATION 1 – THEORETICAL RUN TIME:

Run Time (mins.) = Crop Water Use (inches) / System Net Application Rate (inches/hr.) x 60

English Unit Example

If crop water use is .33 in/day, and the net application rate of the irrigation system is .08 in/hr, how long should the system operate per day to replace crop water use?

Editation 1.	- 11		Peri	Jay		
Crop Water Use	÷	Net Application Rate	х	60	=	Run Time Per Day
Example:						
0.33 in./day	÷	0.08 in./hour	Х	60	=	248 minutes/day

METRIC UNIT EQUATION 1 – THEORETICAL RUN TIME:

Run Time (mins.) = Crop Water Use (mm) / System Net Application Rate (mm/hr.) x 60

Metric Unit Example

If crop water use is 8 mm/day, and the net application rate of the irrigation system is 2 mm/hr, how long should the system operate per day to replace crop water use?

Equation 1	- 11		- GI	Jay		
Crop Water Use	÷	Net Application Rate	х	60	=	Run Time Per Day
Example: 8mm/day	÷	2mm/hour	х	60	=	240 minutes/day

Since the system's net application rate typically doesn't change, only crop water use data must be collected on a frequent basis to calculate theoretical run time. However, plant and soil field conditions must also be monitored to verify that the calculated schedule will deliver desired results or for learning how theoretical values must be adjusted.

The following provides more detailed information regarding the development of crop water use and net application rate information.

Determining Crop Water Use

Crop water use is typically expressed in inches or millimeters of water per day as ETc (evapotranspiration of the crop). It's typically calculated by multiplying the reference evapotranspiration (ETo) rate, which is generated from daily local weather station data, by the crop coefficient (Kc), which is unique to the crop and the geography where it is grown. The purpose of the Kc is to adjust generic weather information to reflect the specific crop being grown. Weather and crop coefficient data may be obtained from local government or university sources, or may be generated on the farm with proper equipment and research procedures. The illustration below, Monthly Average Reference Evapotranspiration by ETo Zone table (CIMIS, 1999) shows data by month throughout California. See the Appendix for additional ETo and precipitation data.

Montl	Monthly Average Reference Evapotranspiration by ETo Zone (inches/month)												
Zone	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Total
1	0.93	1.40	2.48	3.30	4.03	4.50	4.65	4.03	3.30	2.48	1.20	0.62	32.9
2	1.24	1.68	3.10	3.90	4.65	5.10	4.96	4.65	3.90	2.79	1.80	1.24	39.0
3	1.86	2.24	3.72	4.80	5.27	5.70	5.58	5.27	4.20	3.41	2.40	1.86	46.3
4	1.86	2.24	3.41	4.50	5.27	5.70	5.89	5.58	4.50	3.41	2.40	1.86	46.6
5	0.93	1.68	2.79	4.20	5.58	6.30	6.51	5.89	4.50	3.10	1.50	0.93	43.9
6	1.86	2.24	3.41	4.80	5.58	6.30	6.51	6.20	4.80	3.72	2.40	1.86	49.7
7	0.62	1.40	2.48	3.90	5.27	6.30	7.44	6.51	4.80	2.79	1.20	0.62	43.3
8	1.24	1.68	3.41	4.80	6.20	6.90	7.44	6.51	5.10	3.41	1.80	0.93	49.4
9	2.17	2.80	4.03	5.10	5.89	6.60	7.44	6.82	5.70	4.03	2.70	1.86	55.1
10	0.93	1.68	3.10	4.50	5.89	7.20	8.06	7.13	5.10	3.10	1.50	0.93	49.1
11	1.55	2.24	3.10	4.50	5.89	7.20	8.06	7.44	5.70	3.72	2.10	1.55	53.1
12	1.24	1.96	3.41	5.10	6.82	7.80	8.06	7.13	5.40	3.72	1.80	0.93	53.4
13	1.24	1.96	3.10	4.80	6.51	7.80	8.99	7.75	5.70	3.72	1.80	0.93	54.3
14	1.55	2.24	3.72	5.10	6.82	7.80	8.68	7.75	5.70	4.03	2.10	1.55	57.0
15	1.24	2.24	3.72	5.70	7.44	8.10	8.68	7.75	5.70	4.03	2.10	1.24	57.9
16	1.55	2.52	4.03	5.70	7.75	8.70	9.30	8.37	6.30	4.34	2.40	1.55	62.5
17	1.86	2.80	4.65	6.00	8.06	9.00	9.92	8.68	6.60	4.34	2.70	1.86	66.5
18	2.48	3.36	5.27	6.90	8.68	9.60	9.61	8.68	6.90	4.96	3.00	2.17	71.6

Variability between stations within single zones is as high as 0.02 inches per day for zone 1 and during winter months in zone 13. The average standard deviation fo the ETo between estimation sites within a zone for all months is about 0.01 inches per day for the 200 sites used to develop the map.

Monthly Average Reference Evapotranspiration by ETo Zone (mm/month)														
Zo	ne	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Total
1	I	23.6	35.6	63.0	83.8	102.4	114.3	118.1	102.4	83.8	63.0	30.5	15.7	836
2	2	31.5	42.7	78.7	99.1	118.1	129.5	126.0	118.1	99.1	70.9	45.7	31.5	991
3	3	47.2	56.9	94.5	121.9	133.9	144.8	141.7	133.9	106.7	86.6	61.0	47.2	1,176
4	1	47.2	56.9	86.6	114.3	133.9	144.8	149.6	141.7	114.3	86.6	61.0	47.2	1,184
5	5	23.6	42.7	70.9	106.7	141.7	160.0	165.4	149.6	114.3	78.7	38.1	23.6	1,115
6	5	47.2	56.9	86.6	121.9	141.7	160.0	165.4	157.5	121.9	94.5	61.0	47.2	1,262
7	7	15.7	35.6	63.0	99.1	133.9	160.0	189.0	165.4	121.9	70.9	30.5	15.7	1,100
8	3	31.5	42.7	86.6	121.9	157.5	175.3	189.0	165.4	129.5	86.6	45.7	23.6	1,255
9)	55.1	71.1	102.4	129.5	149.6	167.6	189.0	173.2	144.8	102.4	68.6	47.2	1,400
1	0	23.6	42.7	78.7	114.3	149.6	182.9	204.7	181.1	129.5	78.7	38.1	23.6	1,247
1	1	39.4	56.9	78.7	114.3	149.6	182.9	204.7	189.0	144.8	94.5	53.3	39.4	1,349
1:	2	31.5	49.8	86.6	129.5	173.2	198.1	204.7	181.1	137.2	94.5	45.7	23.6	1,356
13	3	31.5	49.8	78.7	121.9	165.4	198.1	228.3	196.9	144.8	94.5	45.7	23.6	1,379
1	4	39.4	56.9	94.5	129.5	173.2	198.1	220.5	196.9	144.8	102.4	53.3	39.4	1,448
1	5	31.5	56.9	94.5	144.8	189.0	205.7	220.5	196.9	144.8	102.4	53.3	31.5	1,471
1	6	39.4	64.0	102.4	144.8	196.9	221.0	236.2	212.6	160.0	110.2	61.0	39.4	1,588
1	7	47.2	71.1	118.1	152.4	204.7	228.6	252.0	220.5	167.6	110.2	68.6	47.2	1,689
18	8	63.0	85.3	133.9	175.3	220.5	243.8	244.1	220.5	175.3	126.0	76.2	55.1	1,819

Variability between stations within single zones is as high as 0.50 mm per day for zone 1 and during winter months in zone 13. The average standard deviation fo the ETo between estimation sites within a zone for all months is about 0.25 mm per day for the 200 sites used to develop the map.
The adjacent illustration, Potato Crop Coefficient vs. Growth Stage (AgriMet, 2009) shows how the crop coefficient changes according to Percent Growth Stage (0 = emergence, 100 = row closure, 200 = dead vines). Note how ETo and Kc values both change during the season.

Theoretical crop water use should also be reduced if the crop doesn't cover 100% of the soil surface. For instance, University of California researchers recommend that if a tree crop provides more than 62% shading, then established crop coefficients should be used. However, if less than 62% of the soil surface is shaded with

the tree canopy, then a 2:1 ratio should be used to generate a correction factor. For example, if an immature canopy only shaded 20% of the soil surface, then estimated water use of the immature orchard would be $2 \times 20 = 40\%$ as much water as a mature orchard. Thus, a multiplier of .4 should be used. The graph below illustrates how percent of mature ETc varies with percent ground shading (Snyder, UC Leaflet 21259).

ENGLISH UNIT EQUATION 2 - CROP WATER USE, INCHES PER DAY:

Crop Water Use, ETc (inches) = ETo x Kc x Crop Coverage Factor

English Unit Example

The ETo in mid June in central California is .35 in/day. The crop is almonds, which has a Kc of .95 during this time of year. The orchard canopy covers 80% of the total orchard surface area. What is the crop water use (ETc) per day?

ЕТо	х	Kc	х	Crop Coverage	=	Crop Water Use, ETc
Example:						
0.35 in./day	Х	0.95	х	1.00	=	0.33 in./day

METRIC UNIT EQUATION 2 - CROP WATER USE, MM PER DAY:

Crop Water Use, ETc (mm) = ETo x Kc x Crop Coverage Factor

Metric Unit Example

The ETo in mid June in central California is 9 mm/day. The crop is almonds, which has a Kc of .95 during this time of year. The orchard canopy covers 80% of the total orchard surface area. What is the crop water use (ETc) per day?

ЕТо	х	Kc	Х	Crop Coverage	=	Crop Water Use, ETc
Example:						
9mm/day	Х	0.95	Х	1.00	=	8.55mm/day

In some areas, ETc (crop ET) information is made available based on modeling average cropping situations, thus eliminating the need to track ETo and Kc information. The charts on the following pages show such ETc rates for drip-irrigated crops in Central California (Burt, 2007). Note that precipitation and reference ETo data are also supplied on the top two lines, whereas the rest of the data is "pre-estimated" crop ET.

English Unit Chart

Typical Precipitation and Crop ET Values (ETc) for Drip Irrigated Crops in the San Joaquin Valley, CA

(Values shown in inches)	Jan.	Feb.	Mar.	Apr.	Мау	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.	Annual
Precipitation	6.8	0.3	1.3	0.2	0.2	0.2	0.1	0.3	0.1	0.6	4.2	2.1	16.5
Grass Reference ETo	0.7	2.1	4.0	5.6	7.3	7.6	8.0	6.8	5.4	3.5	1.1	1.0	53.0
Apples Pears Charries	_												
Plums and Prunes	0.8	0.9	1.6	2.3	6.5	7.3	7.6	6.5	4.9	2.3	0.5	1.0	42.1
Apples, Plums, Cherries,		~ 4					0.5						50.0
etc., with Cover Crop	0.8	2.4	4.1	4.9	7.9	9.0	9.5	8.0	6.1	3.5	0.9	1.2	58.2
and Apricots	0.8	0.9	1.6	2.2	6.0	6.8	7.2	6.2	4.6	2.2	0.5	1.0	40.1
Immature Peaches,													
Nectarines, etc.	0.8	0.9	1.3	1.2	3.5	4.0	4.2	3.7	2.6	1.6	0.5	1.0	25.3
Almonds	0.8	1.0	1.8	3.0	6.5	7.0	7.3	6.2	4.7	3.1	0.5	1.0	42.7
Almonds with Cover Crop	0.8	2.1	3.5	4.9	7.6	8.1	8.4	7.3	5.5	3.2	0.9	1.2	53.5
Immature Almonds	0.8	1.0	1.6	2.0	4.0	4.2	4.3	3.9	2.8	2.0	0.5	1.0	27.9
Walnuts	0.8	0.9	1.7	1.8	5.8	83	8.7	7.4	5.2	2.6	0.5	1.0	44.7
Pistachios	0.8	0.9	1.1	1.1	2.7	6.0	8.5	7.4	5.4	2.8	0.5	1.0	38.2
Pistachios with Cover Crop	0.8	2.1	3.4	3.7	5.3	7.3	9.0	7.7	5.9	3.6	0.9	1.2	50.8
Immature Pistachios	0.8	0.9	1.1	0.7	1.5	3.7	5.1	4.6	3.3	1.8	0.5	1.0	25.0
Miscellaneous Deciduous	0.8	0.9	1.6	2.3	6.2	6.8	7.2	6.3	4.7	2.2	0.5	1.0	40.4
Cotton	0.9	0.9	1.1	1.0	1.7	4.7	8.4	7.4	5.0	1.4	0.5	1.0	33.9
Miscellaneous Field Crops	0.9	0.9	2.2	1.4	2.6	7.1	7.7	3.1	0.1	0.6	0.5	1.0	28.0
Small Vegetables	0.9	1.5	3.6	5.5	1.6	0.2	0.2	1.4	1.3	1.3	0.8	1.2	19.5
Tomatoes and Peppers	0.9	0.9	1.7	0.8	3.7	8.0	7.3	1.2	0.1	0.6	0.5	1.0	26.4
Potatoes, Sugar Beets, Turnips, etc.	0.9	1.2	2.6	5.6	7.8	8.1	7.2	0.4	0.1	0.6	0.5	1.0	35.9
Melons, Squash, and Cucumbers	0.9	0.9	1.1	0.2	1.0	1.0	4.2	4.9	1.5	0.6	0.5	1.0	17.8
Onions and Garlic	0.9	2.1	3.7	4.8	5.2	1.3	0.2	0.3	0.1	0.6	1.0	1.0	21.2
Strawberries	0.9	0.9	2.2	1.4	2.6	7.1	7.7	3.1	0.1	0.6	0.5	1.0	28.0
Flowers, Nursery, and Christmas Trees	0.8	0.9	1.6	2.3	6.2	6.8	7.2	6.3	4.7	2.2	0.5	1.0	40.4
Citrus without Ground Cover	0.8	2.2	3.5	3.9	4.8	5.1	5.2	4.6	3.5	2.8	0.9	1.2	38.4
Immature Citrus	0.9	1.6	2.5	2.2	3.0	3.1	3.2	2.9	2.1	1.9	0.7	1.1	25.1
Avocado	0.8	0.9	1.6	2.3	6.2	6.8	7.2	6.3	4.7	2.2	0.5	1.0	40.4
Miscellaneous Subtropical	0.8	0.9	1.6	2.3	6.2	6.8	7.2	6.3	4.7	2.2	0.5	1.0	40.4
Grapes	0.8	0.9	1.3	1.1	3.5	6.0	6.4	5.1	2.8	0.6	0.5	1.0	30.0
Grapes with Cover Crop	0.9	2.0	3.2	3.1	5.2	6.8	7.2	5.8	3.4	2.1	0.7	1.2	41.5
Immature Grapes	0.9	0.9	1.2	0.8	2.3	3.7	3.8	3.2	1.7	0.6	0.5	1.0	20.7

Metric Unit Chart

Typical Precipitation and Crop ET Values (ETc) for Drip Irrigated Crops in the San Joaquin Valley, CA

(Malwas chawn in name)	lan	Feb	Mar	Apr	May	lun	Int	Διια	Sen	Oct	Nov	Dec	Annual
Precipitation	173	8	33	5	5	5	3	8	3	15	107	53	417
Grass Reference ETo	18	53	102	142	185	193	203	173	137	89	28	25	1349
Apples, Pears, Cherries, Plums and Prunes	20	23	41	58	165	185	193	165	124	58	13	25	1072
Apples, Plums, Cherries, etc., with Cover Crop	20	61	104	124	201	229	241	203	155	89	23	30	1481
Peaches, Nectarines, and Apricots	20	23	41	56	152	173	183	157	117	56	13	25	1016
Immature Peaches, Nectarines, etc.	20	23	33	30	89	102	107	94	66	41	13	25	643
Almonds	20	25	46	76	165	178	185	157	119	79	13	25	1090
Almonds with Cover Crop	20	53	89	124	193	206	213	185	140	81	23	30	1359
Immature Almonds	20	25	41	51	102	107	109	99	71	51	13	25	714
Walnuts	20	23	43	46	147	211	221	188	132	66	13	25	1135
Pistachios	20	23	28	28	69	152	216	188	137	71	13	25	970
Pistachios with Cover Crop	20	53	86	94	135	185	229	196	150	91	23	30	1293
Immature Pistachios	20	23	28	18	38	94	130	117	84	46	13	25	635
Miscellaneous Deciduous	20	23	41	58	157	173	183	160	119	56	13	25	1029
Cotton	23	23	28	25	43	119	213	188	127	36	13	25	864
Miscellaneous Field Crops	23	23	56	36	66	180	196	79	3	15	13	25	714
Small Vegetables	23	38	91	140	41	5	5	36	33	33	20	30	495
Tomatoes and Peppers	23	23	43	20	94	203	185	30	3	15	13	25	678
Potatoes, Sugar Beets, Turnips, etc.	23	30	66	142	198	206	183	10	3	15	13	25	914
Melons, Squash, and Cucumbers	23	23	28	5	25	25	107	124	38	15	13	25	452
Onions and Garlic	23	53	94	122	132	33	5	8	3	15	25	25	538
Strawberries	23	23	56	36	66	180	196	79	3	15	13	25	714
Flowers, Nursery, and Christmas Trees	20	23	41	58	157	173	183	160	119	56	13	25	1029
Citrus without Ground Cover	20	56	89	99	122	130	132	117	89	71	23	30	978
Immature Citrus	23	41	64	56	76	79	81	74	53	48	18	28	640
Avocado	20	23	41	58	157	173	183	160	119	56	13	25	1029
Miscellaneous Subtropical	20	23	41	58	157	173	183	160	119	56	13	25	1029
Grapes	20	23	33	28	89	152	163	130	71	15	13	25	762
Grapes with Cover Crop	23	51	81	79	132	173	183	147	86	53	18	30	1057
Immature Grapes	23	23	30	20	58	94	97	81	43	15	13	25	523
			_			_			-	_	_		

ENGLISH UNIT EQUATION 3 – CROP WATER USE, GALLONS PER PLANT:

In some cases, you may wish to convert crop water use data from inches to gallons per plant. In this case, the following formula should be used:

Crop Water Use (gallons/plant) = Crop Water Use, Inches/Day x .623 x Row Spacing, ft. x Plant Spacing, ft.

English Unit Example

The almond orchard mentioned above was planted on a 20 ft. x 20 ft. spacing. How many gallons of water are used per tree per day?

Crop Water Use	х	.623	х	Row Spacing	х	Plant Spacing	=	Gallons/Plant
Example:								
0.33 in./day	х	.623	х	20 ft.	х	20 ft.	=	82.2 gallons

METRIC UNIT EQUATION 3 – CROP WATER USE, GALLONS PER PLANT:

In some cases, you may wish to convert crop water use data from millimeters to liters per plant. In this case, the following formula should be used:

Crop Water Use (liters/plant) = Crop Water Use, mm/Day x Row Spacing, meters x Plant Spacing, meters.

Metric Unit Example

The almond orchard mentioned above was planted on a 6 m x 6 m spacing. How many liters of water are used per tree per day?

			1319/pic			
Crop Water Use	х	Row Spacing	х	Plant Spacing	=	Liters/Plant
Example:						
8.55mm/day	х	6 meters	х	6 meters	=	307.8 liters

As you'd expect, crop water use changes with weather and stage of crop growth. The figure below shows a theoretical crop water use curve for cotton, in inches and millimeteres per day, in graphic form throughout the year.

EQUATIONS 4a AND 4b: IRRIGATION SYSTEM APPLICATION RATE

The drip system application rate, dependent on emission device flow rates and the spacing at which they're placed, is defined as the volume of water applied to a surface area, and is usually stated in inches or millimeters per hour. Equations 4a and 4b calculate application rates for tape with tape lateral spacing units in inches or feet (mm or meters) respectively, while Equation 5 calculates application rates for on-line emitter, dripline, microjet, microspray and microsprinkler systems. Once the application rate is known, it must be derated by the drip system emission uniformity using Equation 6 to calculate a "net" application rate.

ENGLISH UNIT EQUATION 4A - DRIP TAPE APPLICATION RATE, INCHES PER HOUR

(Lateral spacing in inches)

Application Rate (inches/hr.) = Q-100 x 11.6 / Tape Lateral Spacing, inches

Where: Q100 = Aqua-Traxx tape flow rate in GPM/100 ft. Lateral Spacing = Spacing between tape lines, inches

English Unit Example

Drip tape is being used to grow peppers. The flow is .34 gpm/100 ft., and the laterals are spaced 42 inches apart. What is the application rate?

	oblice	ation Ra	ate,	in./nr. (lateral s	pacing l	n inches)
Q-100 Drip Tape	х	11.6	•	Lateral Spacing (in.)	=	Application Rate (in./hr.)
Example: 0.34 gpm/100 ft.	x	11.6	÷	42 in.	=	0.09 in./hr.

METRIC UNIT EQUATION 4A - DRIP TAPE APPLICATION RATE, MILLIMETERS PER HOUR

(Lateral spacing in centimeters)

Application Rate (mm/hr) = Q-100 x 60/ Tape Lateral Spacing, centimeters

Where: Q100 = Aqua-Traxx tape flow rate in Lpm/100 meters Lateral Spacing = Spacing between tape lines, centimeters

Metric Unit Example

Drip tape is being used to grow peppers. The flow is 4.5 Lpm/100 m, and the laterals are spaced 110 centimeters apart. What is the application rate?

Drip Tape /	Applic	ation F	late,	mm/hr (lateral spac	ing	in centimeters)
Q-100 Drip Tape	х	60	÷	Lateral Spacing (centimeters	= s)	Application Rate (mm/hr)
Example: 4.5 Lpm/100 m.	х	60	÷	110 centimeters	_	2.45 mm/hr

ENGLISH UNIT EQUATION 4B – DRIP TAPE APPLICATION RATE, INCHES PER HOUR

(Lateral spacing in **feet**)

Application Rate (inches/hr.) = Q-100 x .96 / Tape Lateral Spacing, feet

Where: Q-100 = Aqua-Traxx tape flow rate in GPM/100 ft. Lateral Spacing = Spacing between tape lines, feet

English Unit Example

Drip tape is being used to grow peppers. The flow is .34 gpm/100 ft., and the laterals are spaced 3.5 feet apart. What is the application rate?

Drip Tape A	pplic	ation R	ate, i	in./hr. (lateral s	pacing	in feet)
Q-100 Drip Tape	х	0.96	÷	Lateral Spacing (ft.)	=	Application Rate (in./hr.)
Example: 0.34 gpm /100 ft.	x	0.96	÷	3.5 ft.	=	0.09 in./hr.

METRIC UNIT EQUATION 4B – DRIP TAPE APPLICATION RATE, MILLIMETERS PER HOUR

(Lateral spacing in meters)

Application Rate (mm/hr.) = Q-100 x 0.6 / Tape Lateral Spacing, meters

Where: Q-100 = Aqua-Traxx tape flow rate in Lpm/100 meters Lateral Spacing = Spacing between tape lines, meters

Metric Unit Example

Drip tape is being used to grow peppers. The flow is 4.5 Lpm/100 m, and the laterals are spaced 1.1 meters apart. What is the application rate?

Drip Tape	Applic	ation R	ate, I	mm/hr (lateral	spacing	g in meters)
Q-100 Drip Tape	х	0.6	÷	Lateral Spacing (mete	= ers)	Application Rate (mm/hr.)
Example: 4.5 Lpm /100 m	x	0.6	÷	1.1 meters	=	2.45 mm/hr.

Online Calculator Available

Note that users of Aqua-Traxx Premium Drip Tape may calculate application rates and run times using Toro's online Aqua-Traxx Irrigation Calculator at **toro.com** or **driptips.toro.com** and shown below. Once the Aqua-Traxx model is chosen and the system pressure, lateral spacing and emission uniformity are entered, the calculator will present the system application rate along with the hours to apply 1.0 inch of water and 0.1 inches of water.

Aq	ua-Tra	xx Irrig	ation C	alculate)r
You ca	n now easily calcula	te Tape Application F	kate and kun Times	at variable pressure	•
1.	Choose Aqua-Trax	x Model			
	⊙ Aqua-Traxx	O Aqua-Traxx PC			
	Part Number:				
	EAXxx0817, 8" spacin	ig, 0.07 gph, 0.17 gpm/10	00'		
		Emittor Outlot	Nominal omitter	1	
	Part Number	spacing, inches	flow, gph	Nominal gpm/100'	
	EAXxx0817	8	0.07	0.17	
	-				
2.	Enter Tape Inlet P	ressure (PSI):			10 PSI
	Calculated Flow Ra	ates:		0.08 gph/emitter	0.2 gpm/100'
3.	Enter Spacing Bet	ween Tape Lateral F	Rows		3.5 Ofeet Oinches
	Calculated Gross	Application Rate:			0.05 inches/hour
4.	Enter Drip System	Emission Uniformit	у:		90 %
	Calculated Net Appl	ication Rate:			0.05 inches/hour
	Calculated Hours to	apply 1.0 inch of wat	ter:		20.5
	Calculated Hours to	apply .10 inch of wat	ter:		2
				Calculate	Reset
Welco	me to Toro's Aqua-Trax	x Irrigation Calculator! Yo	ou can now easily calculation of the second se	ate Tape Application Rate	and Run Times at variable pressures. Just 1) Choose an Aqua-Traxx model and then 2) Enter Tape

ENGLISH UNIT EQUATION 5 – MICRO-IRRIGATION DEVICE APPLICATION RATE, INCHES PER HOUR

Equation 5 calculates the application rate in inches or millimeters per hour for systems utilizing microirrigation devices such as on-line emitters, dripline, jets or microsprinklers. These devices are typically, but not always, used on permanent crops.

Application Rate (inches/hr.) = (Emission Device Flow Rate, gph x 1.6) / (Row Spacing, feet. x Device Spacing, feet)

Where: Emission Device Flow Rate = Flow rate of each emitter or jet or microsprinkler,

stated in gph per device

Row Spacing = Spacing between lateral lines of hose or dripline, feet

Device Spacing = Spacing between emission devices along the lateral, feet

English Unit Example

Dripline is being used to grow almond trees. The emitter flow rate is .60 gph and emitters are pre-inserted every 4 feet. The dripline rows are spaced 10 feet apart. What is the application rate?

Equation 5	; —]	Micro-	irri	gation Devic	e Aj	oplication R	ate	(in./hr.)
Emission Device Flow (gph)	х	1.6	÷	Row Spacing (ft.)	х	Device Spacing (ft.)	=	Application Rate (in./hr.)
Example: (0.6 gph	x	1.6)	÷	(10 ft.	x	4 ft.)	=	0.024 in./hr.

METRIC UNIT EQUATION 5 – MICRO-IRRIGATION DEVICE APPLICATION RATE, MILLIMETERS PER HOUR

Application Rate (mm/hr.) =

Emission Device Flow Rate, Lph / (Row Spacing, meters x Device Spacing, meters)

Where: Emission Device Flow Rate = Flow rate of each emitter or jet or microsprinkler, stated in Lph per device

Row Spacing = Spacing between lateral lines of hose or dripline, meters Device Spacing = Spacing between emission devices along the lateral, meters

Metric Unit Example

Dripline is being used to grow almond trees. The emitter flow rate is 2 Lph and emitters are pre-inserted every 1.2 meters. The dripline rows are spaced 3 meters apart. What is the application rate?

Equation 5	— J	Micro-irrigation D	evic	e Application Rat	e (mm/hr.)
Emission Device Flow (Lph)	/	Row Spacing (meters)	х	Device = Spacing (meters)	Application Rate (mm/hr.)
Example: 2 Lph	/	(3 meters	x	1.2 meters) =	• .56 mm/hr.

Irrigation System "Net" Application Rate

Now that the application rate is known, it must be de-rated by the irrigation system's uniformity to calculate net application rate. The system uniformity tells how evenly water is applied throughout the field and indicates how much over-irrigation must occur to ensure the driest part of the field receives enough water, i.e., how much over-irrigation will be required to compensate for imperfect uniformity. The system designer provides the theoretical uniformity, however, the actual uniformity of an exiting system may be determined by taking flow measurements from a number of field emission devices, and then dividing the average measurement of the "low quarter measurements" (lowest 25% of the readings) by the overall average. Various terms are used by irrigation engineers to describe system uniformity, including distribution uniformity (DU) and emission uniformity (EU). The illustration below was created using Toro's Color-Traxx design software: the system design's flow variation is mapped by color throughout the field. Note that a design with an EU of 93.5% has less color variation, or flow variation, than a design with a lower, less desirable EU of 88.6%.

One of the main advantages of drip irrigation is the opportunity to obtain high system uniformity. In general, drip irrigation systems often achieve over 90% uniformity with proper design, installation and maintenance. This is in contrast to typical uniformities of 40-60% for gravity systems and 50-75% for sprinkler systems.

To determine the "net" application rate, simply multiply the application rate by the emission uniformity, expressed as a decimal, as shown in EQUATION 6 as follows.

ENGLISH UNIT EQUATION 6 - NET APPLICATION RATE (ALL TYPES OF SYSTEMS)

Net Application Rate (inches/hr.) = Application Rate x Emission Uniformity

English Unit Example

The theoretical system application rate is .09 in./hr., and the emission uniformity was measured in the field to be 90%. What is the net application rate?

Application	Rate (in./hr.)	х	Emission Uniformity	=	Net Application Rate
Example:	.09 in./hr.	x	0.90	=	.08 in./hr.

METRIC UNIT EQUATION 6 - NET APPLICATION RATE (ALL TYPES OF SYSTEMS)

Net Application Rate (millimeters/hr.) = Application Rate x Emission Uniformity

Metric Unit Example

The theoretical system application rate is 3 mm, and the emission uniformity was measured in the field to be 90%. What is the net application rate?

Application	Rate (mm/hr.)	х	Emission Uniformity	=	Net Application Rate
Example:	3 mm/hr.	х	0.90	=	2.7 mm/hr.

High system uniformity reduces operating hours. To help translate the importance of emission uniformity, the following illustrates how many hours are required to apply a minimum of 1.0 inch or 25 mm of water to all parts of an irrigated field assuming various emission uniformities and assuming an application rate of .09 inches or 2.29 mm per hour:

The Effect of Sys	tem Uniformity on	Hours to Apply 1.0	Inch or 25.4 mm
Application Rate (inches/hr, millimeters/hr)	Emission Uniformity	Net Application Rate (inches/hr, millimeters/hr)	Hours to Apply 1.0 inch or 25.4 mm
0.09, 2.29	0.95	0.086, 2.176	11.7
0.09, 2.29	0.90	0.081, 2.06	12.3
0.09, 2.29	0.80	0.072, 1.832	13.9
0.09, 2.29	0.70	0.063, 1.603	15.9
0.09, 2.29	0.60	0.054, 1.374	18.5
0.09, 2.29	0.50	0.045, 1.145	22.2

Thus, if the desired application rate is a minimum of 1.0 inch or 25.4 mm of water to all parts of the field, then the system must be run 12.3 hours if the system uniformity were 90%, whereas the system must be run for 13.9 hours if the system uniformity were 80%. Clearly, high system uniformities utilize time and resources more efficiently. In addition, high system uniformity often prevents runoff, deep percolation, fertilizer waste and over-irrigation to parts of the field and the resulting crop damage.

SUMMARY

Once the crop water use and the net application rate are known using Equations 2 through 6, then a theoretical run time may be easily calculated using Equation 1.

Crop Water Use \div Net Application Ratex 60 $=$ Run Time Per DayExample: 0.33 in./day \div 0.08 in./hourx 60 $=$ 248 minutes/dayEquation 2 — Crop Water Use (in./day)EToxKcxCrop Coverage $=$ Crop Water Use, ETIExample: 0.35 in./dayx0.95x1.00 $=$ 0.33 in./dayEquation 3 — Crop Water Use (gallons/plant)Crop Water Use (gallon fate, in./hr, (lateral spacing in inches)Q-100 Drip Tape Application Rate, in./hr, (lateral spacing in inches)Q-100 Drip Tape Application Rate, in./hr, (lateral spacing in feet)Q-100 Drip Tape Application Rate, in./hr, (lateral spacing in feet)Q-100 Drip Tape Application Rate, in./hr, (lateral spacing (ft.)Equation 5 — Micro-irrigation D	Equation	1 — 1	heoret	ical Ru	n Time	Per I	Day			
Example: 0.33 in./day $+$ 0.08 in./hour x 60 $=$ 248 minutes/dayEquation 2 — Crop Water Use (in./day)EToxKcxCrop Coverage $=$ Crop Water Use, ETCExample: 0.35 in./dayx0.95x1.00 $=$ 0.33 in./dayEquation 3 — Crop Water Use (gallons/plant)Crop Water Use (gallons/plant)Crop Water Use (and Same Spacing xPlant Spacing = Gallons/PlantEquation 4a — Drip Tape Application Rate, in./hr. (lateral spacing in inches)Q-100 Drip Tapex11.6 \div Lateral Spacing (in.)=Application Rate (in./hr.)Equation 4b — Drip Tape Application Rate, in./hr. (lateral spacing in feet)Q-100 Drip Tapex0.96 \div Lateral Spacing (ft.)=Application Rate (in./hr.)Equation 4b — Drip Tape Application Rate, in./hr. (lateral spacing in feet)Q-100 Drip Tapex0.96 \div Lateral Spacing (ft.)=Application Rate (in./hr.)Equation 5 — Micro-irrigation Device Application Rate (in./hr.)Equation 6 — Net Application Rate - All System Types	Crop Water Us	e ÷	Net A	pplicati	on Rate	х	60	=	Run	Time Per Day
Equation 2 — Crop Water Use (in./day)ETOxKcxCrop Coverage=Crop Water Use, ETExample:0.35 in./dayx0.95x1.00=0.33 in./dayEquation 3 — Crop Water Use (gallons/plant)Crop Water Use (gallons/plant)Crop Water Use (gallons/plant)Crop Water Use (gallons/plant)Crop Water Use (allons/plant)Crop Water Use (gallons/plant)Crop Water Use (gallons/plant)Equation 4a —Drip Tape Application Rate, in./hr. (lateral spacing in inches)Q-100 Drip Tape x 11.6 ÷ Lateral = ApplicationSpacing (ft.)Equation 4b —Drip Tape Application Rate, in./hr. (lateral spacing in feet)Q-100 Drip Tape x 0.96 ÷ Lateral spacing in feet)Q-100 Drip Tape x 0.96 ÷ 3.5 ft. =	Example: 0.33 in./day	÷	0.08	in./hour		x	60	=	248	minutes/day
Equation 2 — Crop Water Use (in./day)EToxKcxCrop Coverage=Crop Water Use, ETCExample:0.35 in./dayx0.95x1.00=0.33 in./dayEquation 3 — Crop Water Use (gallons/plant)Crop Water Use (gallon for the standard st										
ETo x Kc x Crop Coverage = Crop Water Use, ETG Example: 0.35 in./day x 0.95 x 1.00 = 0.33 in./day Equation 3 — Crop Water Use (gallons/plant)	Equation	2 — Ci	rop Wa	ater Use	e (in./da	y)				
Example: 0.35 in./day x 0.95 x 1.00 = 0.33 in./day Equation 3 — Crop Water Use (gallons/plant) Crop Water Use x .623 x Row Spacing x Plant Spacing = Gallons/Plant Example: 0.33 in./day x .623 x 20 ft. x 20 ft. = 82.2 gallons Equation 4a — Drip Tape Application Rate, in./hr. (lateral spacing in inches) Q-100 Drip Tape x 11.6 \div Lateral = Application Rate (in./hr.) Example: 0.34 gpm/100 ft. x 11.6 \div 42 in. = 0.09 in./hr. Equation 4b— Drip Tape Application Rate, in./hr. (lateral spacing in feet) Q-100 Drip Tape x 0.96 \div Lateral = Application Rate (in./hr.) Example: 0.34 gpm/100 ft. x 0.96 \div 3.5 ft. = 0.09 in./hr. Equation 5 — Micro-irrigation Device Application Rate (in./hr.) Example: 0.34 gpm / 100 ft. x 1.6 \div Row x Device = Application Rate (in./hr.) Example: 0.34 gpm / 100 ft. x 1.6 \div Row x Device Application Rate (in./hr.) Example: (0.6 gph x 1.6) \div (10 ft. x 4 ft.) = 0.024 in./hr.	ЕТо	x	Кс	x C	rop Cov	erage	e	=	Cro	o Water Use, ETc
Equation 3 — Crop Water Use (gallons/plant) Crop Water Use (gallons/plant) Crop Water Use x .623 x Row Spacing x Plant Spacing = Gallons/Plant Example: 0.33 in./day x .623 x 20 ft. x 20 ft. = 82.2 gallons Equation 4a — Drip Tape Application Rate , in./hr. (lateral spacing in inches) Q-100 Drip Tape x 11.6 ÷ Lateral spacing (in.) = Application Rate (in./hr.) Example: 0.34 gpm/100 ft. x 11.6 ÷ 42 in. = 0.09 in./hr. Orip Tape Application Rate, in./hr. (lateral spacing in feet) Q-100 Drip Tape x 0.96 ÷ Lateral spacing in feet) Q-100 Drip Tape x 0.96 ÷ Lateral = Application Rate (in./hr.) Equation 4b — Drip Tape Application Rate, in./hr. (lateral spacing in feet) Q-100 Drip Tape x 0.96 ÷ Lateral = Application Rate (in./hr.) Example: 0.34 gpm/100 ft. x 0.96 ÷ 3.5 ft. = 0.09 in./hr. = 0.09 in./hr. Equation 5 — Micro-irrigation Device Application Rate (in./hr.) Example: (0.6 gph x 1.6) ÷ (10 ft. x 4 ft.) = 0.024 in./hr.) Example: 1.6) ÷ (10 ft. x 4 ft.) = 0.024 in./hr.) = 0.024 in./hr.)	Example: 0.35 in./day	x (0.95	x	1.00)		=		0.33 in./day
Crop Water Use x .623 x Row Spacing x Plant Spacing = Gallons/Plant Example: 0.33 in./day x .623 x 20 ft. x 20 ft. = 82.2 gallons Equation 4a	Equation	3-6	rop W	atorlls	e (gallo	ns/n	lant)		_	
Crop Water Use x .623 x Row Spacing x Plant Spacing = Gallons/Plant Example: 0.33 in./day x .623 x 20 ft. x 20 ft. = 82.2 gallons Equation 4a	Equation	13-0			e (gano	קופוו				
Example: 0.33 in./dayx.623x20 ft.x20 ft.=82.2 gallonsEquation 4a — Drip Tape Application Rate , in./hr. (lateral spacing in inches)Q-100 Drip Tapex11.6 \div Lateral Spacing (in.)=Application Rate (in./hr.)Example: 0.34 gpm/100 ft.x11.6 \div 42 in.=0.09 in./hr.Q-100 Drip TapeApplication Rate, in./hr. (lateral spacing in feet)Q-100 Drip Tapex0.96 \div Lateral Spacing (ft.)=Application Rate (in./hr.)Equation 4b — Drip Tape Application Rate, in./hr. (lateral spacing in feet)Q-100 Drip Tapex0.96 \div Lateral Spacing (ft.)=Application Rate (in./hr.)Example: 0.34 gpm /100 ft.x0.96 \div 3.5 ft.=0.09 in./hr.Equation 5 — Flow (gph)x1.6 \div Row Spacing (ft.)xDevice Spacing (ft.)=Application Rate (in./hr.)Example: (0.6 gphx1.6) \div (10 ft.x4 ft.)=0.024 in./hr.	Crop Water Use	ex.	623 x	Row S	pacing	x P	Plant S	Spaci	ng =	Gallons/Plant
Equation 4a — Drip Tape Application Rate , in./hr. (lateral spacing in inches)Q-100 Drip Tapex11.6 \div Lateral Spacing (in.)=Application Rate (in./hr.)Example: 0.34 gpm/100 ft.x11.6 \div 42 in.=0.09 in./hr.Equation 4b — Drip Tape Application Rate, in./hr. (lateral spacing in feet)Q-100 Drip Tapex0.96 \div Lateral Spacing (ft.)=Application Rate (in./hr.)Example: 0.34 gpm /100 ft.x0.96 \div 3.5 ft.=0.09 in./hr.Equation 5 — Micro-irrigation Device Application Rate (in./hr.)Emission Devicex1.6 \div Row Spacing (ft.)xDevice Spacing (ft.)=Application Rate (in./hr.)Emission Devicex1.6 \div Row Spacing (ft.)xDevice Spacing (ft.)=Application Rate (in./hr.)Emission Devicex1.6 \div Row Spacing (ft.)xDevice Spacing (ft.)=Application Rate (in./hr.)Example: (0.6 gphx1.6) \div (10 ft.x4 ft.)=0.024 in./hr.	0.33 in./day	х.	623 x	20	ft.	x	20	D ft.	=	82.2 gallons
Equation 4a — Drip Tape Application Rate , in./hr. (lateral spacing in inches)Q-100 Drip Tapex11.6+Lateral Spacing (in.)=Application Rate (in./hr.)Example: 0.34 gpm/100 ft.x11.6+42 in.=0.09 in./hr.Equation 4b — Drip Tape Application Rate, in./hr. (lateral spacing in feet)Q-100 Drip Tapex0.96+Lateral Spacing (ft.)=Application Rate (in./hr.)Q-100 Drip Tapex0.96+Lateral Spacing (ft.)=Application Rate (in./hr.)Example: 0.34 gpm /100 ft.x0.96+3.5 ft.=0.09 in./hr.Equation 5 — Micro-irrigation Device Application Rate (in./hr.)Emission Devicex1.6+Row Spacing (ft.)XDevice Spacing (ft.)=Application Rate (in./hr.)Emission Devicex1.6+Row Spacing (ft.)XDevice Spacing (ft.)=Application Rate (in./hr.)Example: (0.6 gphx1.6)+(10 ft.x4 ft.)=0.024 in./hr.						-			_	
Example: 0.34 gpm/100 ft. x 11.6 ÷ 42 in. = 0.09 in./hr. Equation 4b — Drip Tape Application Rate, in./hr. (lateral spacing in feet) Drip Tape Application Rate, in./hr. (lateral spacing in feet) Q-100 Drip Tape x 0.96 ÷ Lateral spacing (ft.) = Application Rate (in./hr.) Example: 0.34 gpm /100 ft. x 0.96 ÷ 3.5 ft. = 0.09 in./hr. Equation 5 — Micro-irrigation Device Application Rate (in./hr.) Emission Device x 1.6 ÷ Row Spacing (ft.) × Device = Application Rate (in./hr.) Emission Device x 1.6 ÷ (10 ft. x 4 ft.) = 0.024 in./hr. Example: (0.6 gph x 1.6) ÷ (10 ft. x 4 ft.) = 0.024 in./hr.	Drip Ta Q-100 Drip Ta	pe App pe	x 1	n Rate 1.6 ÷	, <mark>in./hr.</mark> Latera	(<mark>late</mark> I	ral sp	pacin =	ig in i	inches) Application
Equation 4b — Drip Tape Application Rate, in./hr. (lateral spacing in feet)Q-100 Drip Tapex $0.96 \div$ Lateral Spacing (ft.)=Application Rate (in./hr.)Example: 0.34 gpm /100 ft.x $0.96 \div$ 3.5 ft. = 0.09 in./hr. Equation 5 — Micro-irrigation Device Application Rate (in./hr.)Emission Device Flow (gph)x $1.6 \div$ Row Spacing (ft.)xDevice Spacing (ft.)=Application Rate (in./hr.)Example: (0.6 gphx $1.6) \div$ (10 ft.x4 ft.)= 0.024 in./hr. Equation 6 — Net Application Rate - All System Types	Example: 0.34 gpm/10	0 ft.	x 1	1.6 ÷	3pacii 42 i	n.		_	:	0.09 in./hr.
Equation 4b — Drip Tape Application Rate, in./hr. (lateral spacing in feet)Q-100 Drip Tapex 0.96 \div Lateral spacing in feet)Q-100 Drip Tapex 0.96 \div Lateral spacing (ft.)=Application Rate (in./hr.)Example: 0.34 gpm /100 ft.x 0.96 \div 3.5 ft.= 0.09 in./hr.Equation 5 — Micro-irrigation Device Application Rate (in./hr.)Emission Devicex 1.6 \div Row spacing (ft.)xDevice spacing (ft.)=Application Flow (gph)x 1.6 \div (10 ft.x4 ft.)= 0.024 in./hr.Equation 6 — Net Application Rate - All System Types						_	_	_	_	
Equation 40 — Drip Tape Application Rate, in./hr. (lateral spacing in feet)Q-100 Drip Tapex0.96 \div Lateral spacing (ft.)=Application Rate (in./hr.)Example: 0.34 gpm /100 ft.x0.96 \div 3.5 ft.=0.09 in./hr.Equation 5 — Micro-irrigation Device Application Rate (in./hr.)Emission Devicex1.6 \div Row Spacing (ft.)xDevice Spacing (ft.)=Application Rate (in./hr.)Emission Devicex1.6 \div Row Spacing (ft.)xDevice Device Spacing (ft.)=Application Rate (in./hr.)Example: (0.6 gphx1.6) \div (10 ft.x4 ft.)=0.024 in./hr.Equation 6 — Net Application Rate - All System Types	Et	to a db								
Q-100 Drip Tapex0.96÷Lateral Spacing (ft.)=Application Rate (in./hr.)Example: 0.34 gpm /100 ft.x0.96÷3.5 ft.=0.09 in./hr.Equation 5 — Micro-irrigation Device Application Rate (in./hr.)Emission Device Flow (gph)x1.6÷Row Spacing (ft.)xDevice Spacing (ft.)=Application Rate (in./hr.)Example: (0.6 gphx1.6)÷(10 ft.x4 ft.)=0.024 in./hr.	Equat Drip T	ape Ap	— plicati	on Rate	, in./hr.	(late	eral s	pacir	ng in	feet)
Example: 0.34 gpm / 100 ft. x 0.96 ÷ 3.5 ft. = 0.09 in./hr. Equation 5 — Micro-irrigation Device Application Rate (in./hr.) Emission Device x 1.6 ÷ Row Spacing (ft.) x Device spacing (ft.) = Application Rate (in./hr.) Example: (0.6 gph x 1.6) ÷ (10 ft. x 4 ft.) = 0.024 in./hr. Equation 6 — Net Application Rate - All System Types	Q-100 Drip Ta	pe	x ().96 ÷	Late Spac	ral ing (i	ft.)	=		Application Rate (in./hr.)
Equation 5 — Micro-irrigation Device Application Rate (in./hr.) Emission Device x 1.6 ÷ Row Spacing (ft.) x Device Spacing (ft.) = Application Rate (in./hr.) Example: (0.6 gph x 1.6) ÷ (10 ft. x 4 ft.) = 0.024 in./hr. Equation 6 — Net Application Rate - All System Types	Example: 0.34 gpm /10	00 ft.	x 0).96 ÷	3.5	ft.		=		0.09 in./hr.
Equation 5 — Micro-irrigation Device Application Rate (in./hr.) Emission Device x 1.6 ÷ Row Spacing (ft.) x Device Spacing (ft.) = Application Rate (in./hr.) Example: (0.6 gph) x 1.6) ÷ (10 ft. x 4 ft.) = 0.024 in./hr. Equation 6 — Net Application Rate - All System Types Fille Fille Fille Fille										
Emission Device x 1.6 ÷ Row x Device = Application Flow (gph) x 1.6 ÷ Row spacing (ft.) Spacing (ft.) = Application Example: (0.6 gph x 1.6) ÷ (10 ft. x 4 ft.) = 0.024 in./hr. Equation 6 — Net Application Rate - All System Types Function Function <t< td=""><td>Equation</td><td>1 5 — M</td><td>licro-ir</td><td>rigatio</td><td>n Devic</td><td>e Ap</td><td>plica</td><td>tion</td><td>Rate</td><td>e (in./hr.)</td></t<>	Equation	1 5 — M	licro-ir	rigatio	n Devic	e Ap	plica	tion	Rate	e (in./hr.)
Example: (0.6 gph x 1.6) ÷ (10 ft. x 4 ft.) = 0.024 in./hr. Equation 6 — Net Application Rate - All System Types	Emission Devid Flow (gph)	ce x	1.6	÷ Row Spac	ing (ft.)	x	Devi Spac	ce ing (f	= 't.)	Application Rate (in./hr.)
Equation 6 — Net Application Rate - All System Types	Example: (0.6 gph	x	1.6)	• (10 f	t	x	4 ft.)		=	0.024 in./hr.
Equation 6 — Net Application Rate - All System Types										
	Equation	6 — N	et App	lication	n Rate -	All S	iyste	m Ty	pes	
	Application Ra	ite (in./h	nr.) x	Emis	sion Uni	Torm	ity	= r	let Ap	oplication Rate

SUMMARY

Once the crop water use and the net application rate are known using Equations 2 through 6, then a theoretical run time may be easily calculated using Equation 1.

	11-	Theore	tical i	<u>Kun</u>	l'ime Pe	er Daj	y			
Crop Water Use	e	÷ Net	Applica	ation	Rate	x 6	0 =	=	Run T	'ime Per Day
Example: 8mm/day		÷ 2mr	n/hour			x 6	60 =	-	240 n	ninutes/day
Equation	2—	Crop W	/ater L	Jse (mm/da	y)				
ЕТо	х	Кс	х	Cro	op Cover	age	=	•	Crop	Water Use, ET
Example: 9mm/day	x	0.95	х		1.00		=		8.	55mm/day
				-		-	-	-	-	
Equation	<u> </u>	Crop W	/ater l	Use ((liters/p	olant)				
Crop Water Use	e x	Row	Spacir	۱g	х	Pla	nt Spa	acing	g =	Liters/Plant
Example:	v	6 -	netorc			-	mot	arc	_	307 8 litors
8.55mm/day	X	01	neters		X		met	ers	=	507.8 liters
Equatio Drip Ta	on 4a ape A	 pplicati	ion Ra	ite, r	nm/hr (latera	al spa	acin	g in 🤇	entimeters)
Q-100 Drip Ta	pe	х	60	÷	Lateral Spacing	(cent	imete	= ers)	1	Application Rate (mm/hr)
Q-100 Drip Ta Example: 4.5 Lpm/100	pe m.	x x	60 60	÷	Lateral Spacing 110 cen	ı (cent timete	imete ers	= ers) =		Application Rate (mm/hr) 2.45 mm/hr
Q-100 Drip Ta Example: 4.5 Lpm/100	pe m.	x x	60 60	÷	Lateral Spacing 110 cen	ı (cent timete	imete ers	= ers) =		Application Rate (mm/hr) 2.45 mm/hr
Q-100 Drip Ta Example: 4.5 Lpm/100 Equati Drip Ta	pe m. ion 4k ape A	x x o	60 60 ion Ra	÷ ÷	Lateral Spacing 110 cen mm/hr ((cent timeto (later	imete ers al spa	= ers) = acin	g in	Application Rate (mm/hr) 2.45 mm/hr meters)
Q-100 Drip Taj Example: 4.5 Lpm/100 Equati Drip Ta Q-100 Drip Taj	pe m. ion 4k ape A pe	x x p pplicat x	60 60 ion Ra 0.6	÷ ÷ ate, r	Lateral Spacing 110 cen mm/hr (Latera Spacin	(cent timeto (latero l ng (me	imete ers al spa	= ers) = acin	g in R	Application Rate (mm/hr) 2.45 mm/hr meters) Application late (mm/hr.)
Q-100 Drip Taj Example: 4.5 Lpm/100 Equati Drip Ta Q-100 Drip Taj Example: 4.5 Lpm/100	pe m. ion 4k ape A pe m	x x pplicat x x	60 60 ion Ra 0.6	÷ ÷ ate, r ÷	Lateral Spacing 110 cen nm/hr (Latera Spacin 1.1 me	(cent timeto (later l ng (me eters	imete ers al spr eters)	= ers) = acin =	g in A R 2	Application Rate (mm/hr) 2.45 mm/hr meters) Application Rate (mm/hr.) 2.45 mm/hr.
Q-100 Drip Taj Example: 4.5 Lpm/100 Equati Drip Ta Q-100 Drip Taj Example: 4.5 Lpm /100	pe m. ion 4k ape A pe m	x x p pplicat x x	60 60 ion Ra 0.6	÷ • • ÷	Lateral Spacing 110 cen mm/hr (Latera Spacin 1.1 me	(cent timeto (laterr I og (me eters	imete ers al spa	= ers) = acin =	g in R 2	Application Rate (mm/hr) 2.45 mm/hr meters) Application Late (mm/hr.) 2.45 mm/hr.
Q-100 Drip Ta Example: 4.5 Lpm/100 Equati Drip Ta Q-100 Drip Ta Example: 4.5 Lpm /100	pe m. ion 4k ape A pe m	x x pplicat x x x	60 60 ion Ra 0.6 0.6	÷ • • • • iion	Lateral Spacing 110 cen nm/hr (Latera Spacin 1.1 me Device	(cent timeto (later l og (me eters Appl	imete ers al spa eters)	= ers) = acin = =	g in 1 A R 2 Cate (Application Rate (mm/hr) 2.45 mm/hr meters) application tate (mm/hr.) 2.45 mm/hr.
Q-100 Drip Taj Example: 4.5 Lpm/100 Equati Drip Ta Q-100 Drip Taj Example: 4.5 Lpm/100 Equation Emission Devic Flow (Lph)	pe m. ion 4k ape A pe m 1 5 — ce /	x x pplicat x x Micro-i Row Spaci	60 60 ion Ra 0.6 0.6 irrigat	÷ ÷ hte, r ÷ ÷ ion	Lateral Spacing 110 cen mm/hr (Latera Spacin 1.1 me Device x) 2	(cent timeto (later lag (me eters Appl Device Spacir	imete ers al spi eters) icatio	= ers) = acin = on R	g in 1 A R 2 2 Rate (= s)	Application Rate (mm/hr) 2.45 mm/hr meters) Application tate (mm/hr.) 4.45 mm/hr. (mm/hr.) Application Rate (mm/hr.
Q-100 Drip Taj Example: 4.5 Lpm/100 Equati Drip Ta Q-100 Drip Taj Example: 4.5 Lpm /100 Equation Emission Devic Flow (Lph) Example: 2 Lph	m. ion 4k ape A pe m 5 — ce / /	x x pplicat x x Micro-i Row Spaci (3 me	60 60 ion Ra 0.6 0.6 irrigat ng (me	÷ ÷ hte, r ÷ ion eters	Lateral Spacing 110 cen mm/hr (Latera Spacin 1.1 me Device x 1) x 2	(cent timeto (later l og (me eters Appl Device Spacir 1.2 me	imete ers al spr iters) iters)	= ers) = accin = on P eter	g in A R 2 date (= s) =	Application Rate (mm/hr) 2.45 mm/hr meters) Application tate (mm/hr.) 2.45 mm/hr. (mm/hr.) Application Rate (mm/hr.

0.90

=

Example:

3 mm/hr.

х

2.7 mm/hr.

B. Additional Considerations Affecting the Irrigation Schedule

Once theoretical run time is calculated, the irrigation manager must then adjust theory with real-world field conditions to decide how often to run the system to replenish each day's withdrawals. This decision will depend on the Management Allowable Depletion (MAD) as well as other agronomic, cultural and weather related factors. The following Agricultural Irrigation Scheduling Table is an example of a full season schedule for tomatoes in central California based on average data from the Waterright scheduling tool (CIT, 2009).

Use online scheduling tools to start, then fine-tune. These and other types of spreadsheet tools allow the user to input data on a daily or weekly basis regarding actual crop ET, application information, soil moisture data and/or crop data. The worksheet on the next page may be used on a daily basis to keep track of available water in the soil profile along with soil moisture readings.

ield Data	Summ	ery								
CIMIS Sta	tionM	adera #	145 Cit	y of Ma	dera iı	1 Madera	County			
Field Nun	nher		1			Irri	gation Effi	iency	90%	
		F	aat				gation Line			
Description	on	E	ast			Gro	oss Applica	tion	0.042	
Crop		To	mato			nat	.e (iii/iii) _	Mar	Allowed Develoption	
Crop Sea:	son	4/*	1-8/1			Sch	neduling Ba	asis <u>Iviax</u>	Апожеа реречо	'n
Stop Irria	ation	7	7/29			Ma All/	nagement	etion	10%	
Stoping							owea Depi			
Soil Type		Cla	y Loams			Allo	owed Depl	etion	0.42	
Maximun	n					atr		one (iii) _		
Rootzone	e (ft)		2			Rui	ntime at M	aximum	44.04	
						Dog	atzana (hh	(mm)	11:01	
Irrigation	System	Dri	р Таре			Roo	otzone (hh	:mm)	11:01	
Irrigation easonal I For Week Ending	System rrigation Averag ETo (In/Day)	Dri n Sched ge Year Rain (In/Wk)	p Tape ule This ETo (In/Day)	Year Rain (In/Wk)	Кс	Roo Aver ETc (In/Day)	ages for We Rootzone (Feet)	:mm) eek Runtime (HH:MM)	Change This Year vs. Average Year (%)	Total E to Dat (Inche
Irrigation easonal I For Week Ending 04/08/09	System rrigation Averag ETo (In/Day) 0.12	Dri n Sched ge Year Rain (In/Wk) 0.31	p Tape ule This ETo (In/Day) N/A	Year Rain (In/Wk) N/A	Kc	Rod Aver ETc (In/Day) 0.03	rages for We Rootzone (Feet) 1.00	eek Runtime (HH:MM) 6:17	Change This Year vs. Average Year (%)	Total E to Dat (Inche 0.24
Irrigation easonal I For Week Ending 04/08/09 04/15/09	System rrigation Average ETo (In/Day) 0.12 0.12	Dri n Sched ge Year Rain (In/Wk) 0.31 0.11	p Tape ule This ETo (In/Day) N/A N/A	Year Rain (In/Wk) N/A N/A	Kc 0.30 0.30	Aver ETc (In/Day) 0.03 0.04	rages for We Rootzone (Feet) 1.00 1.00	eek Runtime (HH:MM) 6:17 6:45	Change This Year vs. Average Year (%) N/A N/A	Total E to Dat (Inche 0.24 0.50
Irrigation easonal I For Week Ending 04/08/09 04/15/09 04/22/09	System rrigation Averag ETO (In/Day) 0.12 0.12 0.13	Dri n Sched ge Year Rain (In/Wk) 0.31 0.11 0.24	ule This ETo (In/Day) N/A N/A N/A	Year Rain (In/Wk) N/A N/A N/A	Kc 0.30 0.30 0.30	Roc Aver ETc (In/Day) 0.03 0.04 0.04	rages for We Rootzone (Feet) 1.00 1.00 1.00	eek Runtime (HH:MM) 6:17 6:45 7:14	Change This Year vs. Average Year (%) N/A N/A N/A	Total E to Dat (Inches 0.24 0.50 0.77
Irrigation easonal I For Week Ending 04/08/09 04/15/09 04/22/09 04/29/09	System rrigation Average ETo (In/Day) 0.12 0.13 0.15 0.15	Dri n Sched ge Year Rain (In/Wk) 0.31 0.11 0.24 0.09 0.17	ule This ETO (In/Day) N/A N/A N/A N/A	Year Rain (In/Wk) N/A N/A N/A N/A	Kc 0.30 0.30 0.30 0.32	Rod Aver ETc (In/Day) 0.03 0.04 0.04 0.05	ages for We Rootzone (Feet) 1.00 1.00 1.00 1.11	eek Runtime (HH:MM) 6:17 6:45 7:14 8:28 1100	Change This Year vs. Average Year (%) N/A N/A N/A N/A N/A	Total E to Dat (Inche) 0.24 0.50 0.77 1.10
Irrigation easonal I For Week Ending 04/08/09 04/15/09 04/22/09 04/22/09 05/06/09 05/13/09	System rrigation Averag ETO (In/Day) 0.12 0.12 0.13 0.15 0.16 0.18	Dri n Sched ge Year Rain (In/Wk) 0.31 0.11 0.24 0.09 0.17 0.05	ule This ETo (In/Day) N/A N/A N/A N/A N/A	Year Rain (In/Wk) N/A N/A N/A N/A N/A N/A	Kc 0.30 0.30 0.30 0.32 0.38	Roc ETC (In/Day) 0.03 0.04 0.04 0.05 0.06 0.09	ages for We Rootzone (Feet) 1.00 1.00 1.00 1.11 1.39 1.68	eek Runtime (HH:MM) 6:17 6:45 7:14 8:28 11:09 17:10	Change This Year vs. Average Year (%) N/A N/A N/A N/A N/A N/A N/A	Total E to Dat (Inches 0.24 0.50 0.77 1.10 1.52 2.17
Irrigation easonal I For Week Ending 04/08/09 04/22/09 04/22/09 05/06/09 05/06/09 05/20/09	System rrigation (In/Day) 0.12 0.12 0.13 0.15 0.16 0.18 0.21	Dri n Sched ge Year Rain (In/Wk) 0.31 0.11 0.24 0.02 0.17 0.05 0.07	ule This ETo (In/Day) N/A N/A N/A N/A N/A N/A N/A	Year Rain (In/Wk) N/A N/A N/A N/A N/A N/A	Kc 0.30 0.30 0.30 0.32 0.38 0.51 0.70	Roc Aver ETC (In/Day) 0.03 0.04 0.04 0.05 0.06 0.09 0.15	ages for We Rootzone (Feet) 1.00 1.00 1.11 1.39 1.68 197	mm) eek Runtime (HH:MM) 6:17 6:45 7:14 8:28 11:09 17:10 26:45	Change This Year vs. Average Year (%) N/A N/A N/A N/A N/A N/A N/A N/A N/A	Total E to Dat (Inches 0.24 0.50 0.77 1.10 1.52 2.17 3.19
Irrigation easonal I For Week Ending 04/08/09 04/22/09 04/22/09 05/06/09 05/06/09 05/20/09 05/20/09	System rrigation Average ETO (In/Day) 0.12 0.12 0.13 0.15 0.16 0.16 0.21 0.23	Dri n Sched ge Year Rain (In/Wk) 0.31 0.11 0.24 0.09 0.17 0.05 0.07 0.14	p Tape ule This ETo (In/Day) N/A N/A N/A N/A N/A N/A N/A N/A	Year Rain (In/Wk) N/A N/A N/A N/A N/A N/A N/A	Kc 0.30 0.30 0.32 0.38 0.51 0.70 0.89	Roc ETc (In/Day) 0.03 0.04 0.04 0.05 0.06 0.09 0.15 0.20	ages for We Rootzone (Feet) 1.00 1.00 1.10 1.11 1.39 1.68 1.97 2.00	mm)	Change This Year vs. Average Year (%) N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	Total E to Dat (Inche 0.24 0.50 0.77 1.10 1.52 2.17 3.19 4.60
Irrigation easonal I For Week Ending 04/08/09 04/15/09 04/22/09 04/29/09 05/20/09 05/20/09 05/27/09 06/23/09	System rrigation Average ETO (In/Day) 0.12 0.12 0.13 0.15 0.16 0.16 0.21 0.23 0.25	Dri n Sched ge Year Rain (In/Wk) 0.31 0.11 0.24 0.09 0.17 0.05 0.07 0.14 0.02	p Tape ule This ETo (In/Day) N/A N/A N/A N/A N/A N/A N/A N/A	Year Rain (In/Wk) N/A N/A N/A N/A N/A N/A N/A N/A	Kc 0.30 0.30 0.32 0.38 0.51 0.70 0.89 1.03	Roc ETc (In/Day) 0.03 0.04 0.04 0.05 0.06 0.09 0.15 0.20 0.26	ages for We Rootzone (Feet) 1.00 1.00 1.00 1.11 1.39 1.68 1.97 2.00 2.00	mm)	Change This Year vs. Average Year (%) N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	Total E to Dat (Inches 0.24 0.50 0.77 1.10 1.52 2.17 3.19 4.60 6.39
Irrigation easonal I For Week Ending 04/08/09 04/15/09 04/22/09 04/29/09 05/6/09 05/6/09 05/27/09 05/27/09 06/03/09 06/03/09	System rrigation Average (In/Day) 0.12 0.12 0.13 0.15 0.16 0.16 0.21 0.23 0.25 0.27	Dri sched ge Year Rain (In/Wk) 0.31 0.11 0.24 0.09 0.17 0.05 0.07 0.14 0.02 0.05	p Tape ule This ETo (In/Day) N/A N/A N/A N/A N/A N/A N/A N/A N/A	Year Rain (In/Wk) N/A N/A N/A N/A N/A N/A N/A N/A	Kc 0.30 0.30 0.32 0.38 0.51 0.70 0.89 1.03 1.09	Roc ETc (In/Day) 0.03 0.04 0.04 0.05 0.06 0.09 0.15 0.20 0.26 0.30	ages for We Rootzone (Feet) 1.00 1.00 1.00 1.11 1.39 1.68 1.97 2.00 2.00 2.00	mm) eek Runtime (HH:MM) 6:17 6:45 7:14 8:28 11:09 17:10 26:45 36:50 46:60 54:42	Change This Year vs. Average Year (%) N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	Total E to Dat (Inche 0.24 0.50 0.77 1.10 1.52 2.17 3.19 4.60 6.39 8.47
Irrigation easonal I For Week Ending 04/08/09 04/22/09 04/29/09 05/6/09 05/27/09 05/27/09 05/27/09 06/03/09 06/03/09 06/17/09	System rrigation Average (In/Day) 0.12 0.12 0.13 0.15 0.16 0.16 0.16 0.21 0.23 0.25 0.27 0.29	Dri sched ge Year Rain (In/Wk) 0.31 0.11 0.24 0.09 0.17 0.05 0.00 0.00	p Tape ule This ETo (In/Day) N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	Year Rain (In/Wk) N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	Kc 0.30 0.30 0.30 0.32 0.38 0.51 0.70 0.89 1.03 1.09 1.10	Roc ETc (In/Day) 0.03 0.04 0.04 0.05 0.06 0.09 0.15 0.20 0.26 0.30 0.32	ages for We Rootzone (Feet) 1.00 1.00 1.00 1.11 1.39 1.68 1.97 2.00 2.00 2.00 2.00	mm) eek Runtime (HH:MM) 6:17 6:45 7:14 8:28 11:09 17:10 26:45 36:45 46:60 54:42 58:39	Change This Year vs. Average Year (%) N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	Total E to Dat (Inche 0.24 0.50 0.77 1.10 1.52 2.17 3.19 4.60 6.39 8.47 10.71
Irrigation easonal I For Week Ending 04/08/09 04/15/09 04/22/09 05/06/09 05/13/09 05/27/09 06/03/09 06/10/09 06/10/09 06/10/09 06/10/09 06/10/09 06/10/09 06/10/09	System rrigation Average (In/Day) 0.12 0.12 0.13 0.15 0.16 0.18 0.21 0.23 0.25 0.27 0.29 0.30	Dri sched ge Year Rain (In/Wk) 0.31 0.11 0.24 0.09 0.17 0.05 0.07 0.14 0.02 0.05 0.00 0.00	р Таре ule This ETo (In/Day) N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	Year Rain (In/Wk) N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	Kc 0.30 0.30 0.30 0.32 0.38 0.51 0.70 0.89 1.03 1.09 1.10 1.10	Roc ETc (In/Day) 0.03 0.04 0.04 0.05 0.06 0.09 0.15 0.20 0.26 0.30 0.32 0.33	ages for We Rootzone (Feet) 1.00 1.00 1.00 1.11 1.39 1.68 1.97 2.00 2.00 2.00 2.00 2.00 2.00	mm)	Change This Year vs. Average Year (%) N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	Total E to Dat (Inche 0.24 0.50 0.77 1.10 1.52 2.17 3.19 4.60 6.39 8.47 10.71 12.99
Irrigation easonal I For Week Ending 04/08/09 04/15/09 04/22/09 04/29/09 05/26/09 05/27/09 06/03/09 06/10/09 06/10/09 06/17/09 06/24/09 07/01/09	System rrigation Average ETo (In/Day) 0.12 0.12 0.13 0.15 0.16 0.18 0.21 0.23 0.25 0.27 0.29 0.30 0.29	Dri sched ge Year Rain (In/Wk) 0.31 0.11 0.24 0.09 0.17 0.05 0.07 0.14 0.02 0.05 0.00 0.00 0.00 0.00	p Tape ule This ETo (In/Day) N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	Year Rain (In/Wk) N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	Kc 0.30 0.30 0.32 0.38 0.51 0.70 0.89 1.03 1.09 1.10 1.10	Roc	rages for We Rootzone (Feet) 1.00 1.00 1.00 1.11 1.39 1.68 1.97 2.00 2.00 2.00 2.00 2.00 2.00 2.00	mm) Runtime (HH:MM) 6:17 6:45 7:14 8:28 11:09 17:10 26:45 36:50 46:60 54:42 58:39 59:57 59:04	Change This Year vs. Average Year (%) N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	Total E to Dat (Inches) 0.24 0.07 1.10 1.52 2.17 3.19 4.60 6.39 8.47 10.71 12.99 15.24
Irrigation easonal I For Week Ending 04/08/09 04/15/09 04/22/09 04/22/09 05/06/09 05/2/09 05/20/09 05/20/09 06/10/09 06/10/09 06/12/09 06/12/09 06/24/09 07/01/09 07/08/09	System rrigation Averat ETo (In/Day) 0.12 0.12 0.13 0.15 0.16 0.18 0.21 0.23 0.25 0.27 0.29 0.30 0.29 0.30	Dri sched ge Year Rain (In/Wk) 0.31 0.11 0.24 0.09 0.17 0.05 0.07 0.14 0.02 0.05 0.00 0.00 0.00 0.00 0.00	р Таре ule This ETo (In/Day) N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	Year Rain (In/Wk) N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	Kc 0.30 0.30 0.32 0.38 0.51 0.70 0.89 1.03 1.09 1.10 1.10 1.10 1.10	Roc	rages for We Rootzone (Feet) 1.00 1.00 1.00 1.11 1.39 1.68 1.97 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.0	mm) eek Runtime (HH:MM) 6:17 6:45 7:14 8:28 11:09 17:10 26:45 36:50 46:60 54:42 58:39 59:57 59:04 56:35	Change This Year vs. Average Year (%) N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	Total E to Dat (Inchee 0.24 0.07 1.10 1.52 2.17 3.19 4.60 6.39 8.47 10.71 12.99 15.24 17.40
Irrigation easonal I For Week Ending 04/08/09 04/15/09 04/22/09 04/22/09 05/06/09 05/2/09 05/2/09 05/2/09 06/10/09 06/17/09 06/24/09 07/01/09 07/20/09 07/20/09	System rrigation Averat ETO (In/Day) 0.12 0.12 0.13 0.15 0.16 0.18 0.21 0.23 0.25 0.27 0.29 0.30 0.29 0.30 0.29 0.28 0.28	Dri sched ge Year Rain (In/Wk) 0.31 0.11 0.24 0.09 0.17 0.05 0.07 0.14 0.02 0.05 0.00 0.00 0.00 0.00 0.00 0.00	р Таре ule This ETo (In/Day) N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	Year Rain (In/Wk) N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	Kc 0.30 0.30 0.32 0.38 0.51 0.70 0.89 1.03 1.09 1.10 1.10 1.10 1.108 1.02	Roc Aver ETc (In/Day) 0.03 0.04 0.04 0.05 0.06 0.09 0.15 0.20 0.26 0.30 0.32 0.32 0.33 0.32 0.31 0.28	rages for We Rootzone (Feet) 1.00 1.00 1.00 1.11 1.39 1.68 1.97 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.0	eek Runtime (HH:MM) 6:17 6:45 7:14 8:28 11:09 17:10 26:45 36:50 46:60 54:42 58:39 59:57 59:04 56:35 51:51	Change This Year vs. Average Year (%) N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	Total E to Dat (Inchee) 0.24 0.07 1.10 1.52 2.17 3.19 4.60 6.39 8.47 10.71 12.99 15.24 17.40 19.38

© 2018 The Toro Company

ield Data	Summ	ery									
CIMIS Sta	tionM	adera #'	145 Cit	y of Mad	dera ii	1 Madera	<i>County</i>				
			1						90%		
Field Num	iber					Irri	gation Effic	iency	30%		
Descriptio	on	E	ast			Gro	oss Applica	tion			
		_			Rate (mm/hr) 1.07						
Crop	rop Iomato Scheduling Basis Max Allowed Depletion								n		
Crop Season 4/1 – 8/1 Scheduling Basis								asis <u>mar</u>			
Management											
Stop Irrigation 7/29 Allowed Depletion 10%											
C .: T		Cla	vLoams					- 41			
Soil Type		0.04	<i>j</i> 2001110			Alle	owed Depl Max Rootz	etion one (mm)	10.7		
Maximum	า							,			
Rootzone	(m)	.6	51			Ru	ntime at M	aximum	11.01		
luutaantin a (C	Dri	n Tane			Ro	otzone (hh	:mm)	11:01		
Irrigation System Drip Tape											
ingation.	rigation	o Schod			_						
ingation i	rrigation	n Sched	ule				-				
Seasonal II For Week Ending	Average (mm/day)	n Sched ge Year Rain (mm/wk)	ule This ETo (mm/day)	Year Rain (mm/wk)	Кс	Aver ETc (mm/day)	rages for We Rootzone (m)	eek Runtime (HH:MM)	Change This Year vs. Average Year (%)	Total ETc to Date (mm)	
For Week Ending 04/8/2009	Average ETO (mm/day) 3.0	n Sched ge Year Rain (mm/wk) 7.9	ule This ETo (mm/day) N/A	Year Rain (mm/wk) N/A	Кс 0.3	Aver ETc (mm/day) 0.8	rages for We Rootzone (m) 0.30	eek Runtime (HH:MM) 6:17	Change This Year vs. Average Year (%) N/A	Total ETc to Date (mm) 6.1	
For Week Ending 04/8/2009 04/15/2009	Average ETO (mm/day) 3.0 3.0	n Sched ge Year Rain (mm/wk) 7.9 2.8	ule This ETo (mm/day) N/A N/A	Year Rain (mm/wk) N/A N/A	Kc 0.3 0.3	Aver ETc (mm/day) 0.8 1.0	rages for We Rootzone (m) 0.30 0.30	eek Runtime (HH:MM) 6:17 6:45	Change This Year vs. Average Year (%) N/A N/A	Total ETc to Date (mm) 6.1 12.7	
Geasonal II For Week Ending 04/8/2009 04/15/2009 04/22/2009	Average ETO (mm/day) 3.0 3.0 3.3	n Sched ge Year Rain (mm/wk) 7.9 2.8 6.1	ule This ETo (mm/day) N/A N/A N/A	Year Rain (mm/wk) N/A N/A N/A N/A	Kc 0.3 0.3 0.3	Aver ETc (mm/day) 0.8 1.0 1.0	rages for We Rootzone (m) 0.30 0.30 0.30	eek Runtime (HH:MM) 6:17 6:45 7:14	Change This Year vs. Average Year (%) N/A N/A N/A	Total ETc to Date (mm) 6.1 12.7 19.6	
Geasonal II For Week Ending 04/8/2009 04/15/2009 04/22/2009 04/29/2009	Average ETO (mm/day) 3.0 3.0 3.3 3.8	r Sched ge Year Rain (mm/wk) 7.9 2.8 6.1 2.3	ule This ETo (mm/day) N/A N/A N/A N/A	Year Rain (mm/wk) N/A N/A N/A N/A	Kc 0.3 0.3 0.3 0.32	Aver ETc (mm/day) 0.8 1.0 1.0 1.3	rages for We Rootzone (m) 0.30 0.30 0.30 0.30 0.34	eek Runtime (HH:MM) 6:17 6:45 7:14 8:28	Change This Year vs. Average Year (%) N/A N/A N/A N/A	Total ETc to Date (mm) 6.1 12.7 19.6 27.9	
easonal II For Week Ending 04/8/2009 04/15/2009 04/22/2009 04/29/2009 05/6/2009	rrigation Averac ETo (mm/day) 3.0 3.0 3.3 3.8 4.1	Sched Rain (mm/wk) 7.9 2.8 6.1 2.3 4.3	ule This ETo (mm/day) N/A N/A N/A N/A N/A	Year Rain (mm/wk) N/A N/A N/A N/A N/A	Kc 0.3 0.3 0.3 0.32 0.32	Aver ETc (mm/day) 0.8 1.0 1.0 1.3 1.5	rages for We Rootzone (m) 0.30 0.30 0.30 0.30 0.34 0.42	eek Runtime (HH:MM) 6:17 6:45 7:14 8:28 11:09	Change This Year vs. Average Year (%) N/A N/A N/A N/A N/A	Total ETc to Date (mm) 6.1 12.7 19.6 27.9 38.6	
Geasonal II For Week Ending 04/8/2009 04/15/2009 04/22/2009 04/29/2009 05/6/2009 05/13/2009	Average ETO (mm/day) 3.0 3.0 3.3 3.8 4.1 4.6	r Sched ge Year Rain (mm/wk) 7.9 2.8 6.1 2.3 4.3 1.3	ule This ETo (mm/day) N/A N/A N/A N/A N/A	Year Rain (mm/wk) N/A N/A N/A N/A N/A N/A	Kc 0.3 0.3 0.32 0.32 0.38 0.51	Aver ETc (mm/day) 0.8 1.0 1.0 1.3 1.5 2.3	rages for We Rootzone (m) 0.30 0.30 0.30 0.34 0.42 0.51	eek Runtime (HH:MM) 6:17 6:45 7:14 8:28 11:09 17:10	Change This Year vs. Average Year (%) N/A N/A N/A N/A N/A N/A	Total ETc to Date (mm) 6.1 12.7 19.6 27.9 38.6 55.1	
Geasonal II For Week Ending 04/8/2009 04/15/2009 04/22/2009 04/22/2009 05/6/2009 05/6/2009 05/13/2009 05/20/2009	Average ETO (mm/day) 3.0 3.0 3.3 3.8 4.1 4.6 5.3	P Sched ge Year Rain (mm/wk) 7.9 2.8 6.1 2.3 4.3 1.3 1.8	ule This ETo (mm/day) N/A N/A N/A N/A N/A N/A	Year Rain (mm/wk) N/A N/A N/A N/A N/A N/A	Kc 0.3 0.3 0.32 0.32 0.38 0.51 0.70	Aver ETc (mm/day) 0.8 1.0 1.3 1.5 2.3 3.8	ages for We Rootzone (m) 0.30 0.30 0.30 0.34 0.42 0.51 0.60	eek Runtime (HH:MM) 6:17 6:45 7:14 8:28 11:09 17:10 26:45:00	Change This Year vs. Average Year (%) N/A N/A N/A N/A N/A N/A N/A N/A	Total ETC to Date (mm) 6.1 12.7 19.6 27.9 38.6 55.1 81.0	
Geasonal II For Week Ending 04/8/2009 04/15/2009 04/22/2009 04/22/2009 05/6/2009 05/6/2009 05/20/2009 05/20/2009	rrigation Average ETo (mm/day) 3.0 3.3 3.8 4.1 4.6 5.3 5.8	P Sched ge Year Rain (mm/wk) 7.9 2.8 6.1 2.3 4.3 1.3 1.8 3.6	ule This ETo (mm/day) N/A N/A N/A N/A N/A N/A N/A	Year Rain (mm/wk) N/A N/A N/A N/A N/A N/A N/A	Kc 0.3 0.3 0.3 0.32 0.38 0.51 0.70 0.8	Aver ETc (mm/day) 0.8 1.0 1.3 1.5 2.3 3.8 5.1	ages for We Rootzone (m) 0.30 0.30 0.34 0.42 0.51 0.60 0.61	ek Runtime (HH:MM) 6:17 6:45 7:14 8:28 11:09 17:10 26:45:00 36:50:00	Change This Year vs. Average Year (%) N/A N/A N/A N/A N/A N/A N/A N/A N/A	Total ETc to Date (mm) 6.1 12.7 19.6 27.9 38.6 55.1 81.0 116.8	
Geasonal II For Week Ending 04/8/2009 04/15/2009 04/22/2009 05/6/2009 05/2/2009 05/20/2009 05/27/2009 03/6/2009	rrigation Average ETo (mm/day) 3.0 3.0 3.3 3.8 4.1 4.6 5.3 5.8 6.4	Performance of the second seco	ule This ETo (mm/day) N/A N/A N/A N/A N/A N/A N/A N/A	Year Rain (mm/wk) N/A N/A N/A N/A N/A N/A N/A N/A	Kc 0.3 0.3 0.3 0.32 0.32 0.38 0.51 0.70 0.8 1.03	Aver ETc (mm/day) 0.8 1.0 1.0 1.3 1.5 2.3 3.8 5.1 6.6	ages for We Rootzone (m) 0.30 0.30 0.30 0.34 0.42 0.51 0.60 0.61 0.61	eek Runtime (HH:MM) 6:17 6:45 7:14 8:28 11:09 17:10 26:45:00 36:50:00 46:50:00	Change This Year vs. Average Year (%) N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	Total ETc to Date (mm) 6.1 12.7 19.6 27.9 38.6 55.1 81.0 116.8 162.3	
Geasonal II For Week Ending 04/8/2009 04/15/2009 04/22/2009 05/6/2009 05/2/2009 05/20/2009 05/27/2009 03/6/2009 10/6/2009	Average ETo (mm/day) 3.0 3.0 3.3 3.8 4.1 4.6 5.3 5.8 6.4 6.9	Performance of the second seco	ule This ETo (mm/day) N/A N/A N/A N/A N/A N/A N/A N/A N/A	Year Rain (mm/wk) N/A N/A N/A N/A N/A N/A N/A N/A N/A	Kc 0.3 0.3 0.32 0.38 0.51 0.70 0.8 1.03 1.09	Aver ETc (mm/day) 0.8 1.0 1.0 1.3 1.5 2.3 3.8 5.1 6.6 7.6	ages for We Rootzone (m) 0.30 0.30 0.30 0.34 0.42 0.51 0.60 0.61 0.61 0.61	eek Runtime (HH:MM) 6:17 6:45 7:14 8:28 11:09 17:10 26:45:00 36:50:00 46:50:00 54:42:00	Change This Year vs. Average Year (%) N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	Total ETc to Date (mm) 6.1 12.7 19.6 27.9 38.6 55.1 81.0 116.8 162.3 215.1	
For Week Ending 04/8/2009 04/15/2009 04/22/2009 04/22/2009 05/6/2009 05/13/2009 05/20/2009 05/20/2009 05/20/2009 05/20/2009 05/20/2009 05/20/2009 05/20/2009 05/20/2009 05/20/2009 05/2009 05/2009 06/2009 06/2009 06/2009 06/17/2009	Average ETo (mm/day) 3.0 3.0 3.0 3.0 3.0 5.3 5.8 6.4 6.9 7.4	Performance of the second seco	ule This ETo (mm/day) N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	Year Rain (mm/wk) N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	Kc 0.3 0.3 0.32 0.32 0.38 0.51 0.70 0.8 1.03 1.09 1.1	Aver ETc (mm/day) 0.8 1.0 1.0 1.3 1.5 2.3 3.8 5.1 6.6 7.6 8.1	rages for We Rootzone (m) 0.30 0.30 0.30 0.34 0.42 0.51 0.60 0.61 0.61 0.61 0.61	eek Runtime (HH:MM) 6:17 6:45 7:14 8:28 11:09 17:10 26:45:00 36:50:00 46:50:00 58:39:00	Change This Year vs. Average Year (%) N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	Total ETc to Date (mm) 6.1 12.7 19.6 27.9 38.6 55.1 81.0 116.8 162.3 215.1 272.0	
Geasonal II For Week Ending 04/8/2009 04/22/2009 04/22/2009 05/6/2009 05/6/2009 05/27/2009 05/27/2009 03/6/2009 10/6/2009 06/17/2009 06/24/2009	Averace ETO (mm/day) 3.0 3.0 3.3 3.8 4.1 4.6 5.3 5.8 6.4 6.9 7.4 7.6	Performance in the second seco	ule This ETo (mm/day) N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	Year Rain (mm/wk) N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	Kc 0.3 0.3 0.3 0.3 0.32 0.38 0.51 0.70 0.8 1.03 1.09 1.1 1.1	Aver ETc (mm/day) 0.8 1.0 1.0 1.3 1.5 2.3 3.8 5.1 6.6 7.6 8.1 8.4	rages for We Rootzone (m) 0.30 0.30 0.30 0.34 0.42 0.51 0.60 0.61 0.61 0.61 0.61 0.61	Eek Runtime (HH:MM) 6:17 6:45 7:14 8:28 11:09 17:10 26:45:00 36:50:00 46:50:00 54:32:00 58:39:00 59:57:00	Change This Year vs. Average Year (%) N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	Total ETc to Date (mm) 6.1 12.7 19.6 27.9 38.6 55.1 81.0 116.8 162.3 215.1 272.0 329.9	
Geasonal II For Week Ending 04/8/2009 04/15/2009 04/22/2009 04/29/2009 05/6/2009 05/6/2009 05/27/2009 05/27/2009 06/17/2009 06/24/2009 01/7/2009	rrigation Averace ETo (mm/day) 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	Performance of the second seco	ule This ETo (mm/day) N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	Year Rain (mm/wk) N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	Kc 0.3 0.3 0.3 0.32 0.38 0.51 0.70 0.8 1.03 1.09 1.1 1.1 1.1	Aver ETc (mm/day) 0.8 1.0 1.3 1.5 2.3 3.8 5.1 6.6 7.6 8.1 8.4 8.1	rages for We Rootzone (m) 0.30 0.30 0.34 0.42 0.51 0.60 0.61 0.61 0.61 0.61 0.61	eek Runtime (HH:MM) 6:17 6:45 7:14 8:28 11:09 17:10 26:45:00 36:50:00 46:50:00 46:50:00 54:42:00 54:42:00 59:57:00 59:04:00	Change This Year vs. Average Year (%) N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	Total ETc to Date (mm) 6.1 12.7 19.6 27.9 38.6 55.1 81.0 116.8 162.3 215.1 272.0 329.9 387.1	
Seasonal II For Week Ending 04/15/2009 04/15/2009 04/29/2009 05/6/2009 05/20/2009 05/27/2009 05/27/2009 06/24/2009 06/24/2009 01/7/2009 08/7/2009	Average ETo (mm/day) 3.0 3.0 3.0 3.0 3.0 5.8 6.4 6.9 7.4 7.6 7.4 7.1	Performance of the second seco	ule This ETo (mm/day) N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	Year Rain (mm/wk) N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	Kc 0.3 0.3 0.32 0.38 0.51 0.70 0.8 1.03 1.03 1.09 1.1 1.1 1.1 1.1	Aver ETc (mm/day) 0.8 1.0 1.3 1.5 2.3 3.8 5.1 6.6 7.6 8.1 8.1 8.4 8.1 7.9	ages for We Rootzone (m) 0.30 0.30 0.34 0.42 0.51 0.60 0.61 0.61 0.61 0.61 0.61 0.61 0.6	ek Runtime (HH:MM) 6:17 6:45 7:14 8:28 11:09 17:10 26:45:00 36:50:00 46:50:00 55:42:00 58:39:00 59:57:00 59:57:00	Change This Year vs. Average Year (%) N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	Total ETc to Date (mm) 6.1 12.7 19.6 27.9 38.6 55.1 81.0 116.8 162.3 215.1 272.0 329.9 387.1 442.0	
Seasonal II For Week Ending 04/8/2009 04/15/2009 04/22/2009 05/6/2009 05/27/2009 05/27/2009 05/27/2009 06/24/2009 06/24/2009 01/7/2009 08/7/2009	Average ETo (mm/day) 3.0 3.0 3.0 3.0 3.0 3.0 5.8 6.4 6.9 7.4 7.6 7.4 7.1 7.1	Performance in the second seco	ule This ETo (mm/day) N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	Year Rain (mm/wk) N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	Kc 0.3 0.32 0.38 0.51 0.700 0.8 1.031 1.03 1.11 1.11 1.12 1.13 1.14	Aver ETc (mm/day) 0.8 1.0 1.3 1.5 2.3 3.8 5.1 6.6 7.6 8.1 8.1 8.4 8.1 7.9 7.1	ages for We Rootzone (m) 0.30 0.30 0.34 0.42 0.51 0.60 0.61 0.61 0.61 0.61 0.61 0.61 0.6	ek Runtime (HH:MM) 6:17 6:45 7:14 8:28 11:09 17:10 26:45:00 36:50:00 46:50:00 54:42:00 58:39:00 59:57:00 58:39:00 59:57:00 56:35:00 51:51:00	Change This Year vs. Average Year (%) N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	Total ETc to Date (mm) 6.1 12.7 19.6 27.9 38.6 55.1 81.0 116.8 162.3 215.1 272.0 329.9 387.1 442.0 492.3	
Seasonal II For Week Ending 04/8/2009 04/15/2009 04/22/2009 05/6/2009 05/27/2009 05/27/2009 05/27/2009 06/17/2009 06/24/2009 01/7/2009 07/15/2009 07/15/2009	Average ETo (mm/day) 3.0 3.0 3.0 3.0 3.0 3.0 5.8 6.4 6.9 7.4 7.6 7.1 7.1 6.9	P Sched ge Year Rain (mm/wk) 7.9 2.8 6.1 2.3 4.3 1.3 1.8 3.6 0.5 1.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	ule This ETo (mm/day) N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	Year Rain (mm/wk) N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	Kc 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3	Aver ETc (mm/day) 0.8 1.0 1.3 1.5 2.3 3.8 5.1 6.6 7.6 8.1 8.4 8.1 7.9 7.1 6.4	ages for We Rootzone (m) 0.30 0.30 0.30 0.34 0.42 0.51 0.60 0.61 0.61 0.61 0.61 0.61 0.61 0.6	Runtime (HH:MM) 6:17 6:45 7:14 8:28 11:09 17:10 26:45:00 36:50:00 46:50:00 56:30:00 59:04:00 59:04:00 59:05:100 56:35:00 51:51:00	Change This Year vs. Average Year (%) N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	Total ETc to Date (mm) 6.1 12.7 19.6 27.9 38.6 55.1 81.0 116.8 162.3 215.1 272.0 329.9 387.1 442.0 442.0 442.3 535.7	

Total Runtime = 592:03 hh:mm = 637 Millimetres Gross Applied

Irrigation Scheduling "Replace What's Used" Template - English Units

Fie	ld <u>we</u> s	st	Zo	ne_1	Acre	es 10	So	Soil Type <u>sandy loam</u> Available Water/Foot <u>1.5 inches</u>							
Day	Pump Pressure - PSI	Pump Flow - GPM	Application Rate - Inches Per Hour*	Hours of Operation	Gross Water Applied - Inches	Net Water Applied - Inches**	Crop ET	"Banked Water"	Net Water Banked	Soil Moisture Status - Site 1	Soil Moisture Status - Site 2	Soil Moisture Status - Site 3	Soil Moisture Status - Site 4		
1	50	400	0.09	6	0.53	0.48	0.20	0.28	0.28						
2	50	400	0.09	0	0.00	0.00	0.25	-0.25	0.03						
3	50	400	0.09	6	0.53	0.48	0.30	0.18	0.20						
4	50	400	0.09	4	0.35	0.32	0.30	0.02	0.22						
5	50	400	0.09	0	0.00	0.00	0.25	-0.25	-0.03						
6	50	400	0.09	6	0.53	0.48	0.30	0.18	0.15						
7	50	400	0.09	6	0.53	0.48	0.35	0.13	0.28						
8	50	400	0.09	4	0.35	0.32	0.40	-0.08	0.20						
9	50	400	0.09	6	0.53	0.48	0.40	0.08	0.27						
10	50	400	0.09	6	0.53	0.48	0.35	0.13	0.40						
11	50	400	0.09	0	0.00	0.00	0.30	-0.30	0.10						
12	50	400	0.09	6	0.53	0.48	0.30	0.18	0.28						
13	50	400	0.09	0	0.00	0.00	0.30	-0.30	-0.02						
14	50	400	0.09	6	0.53	0.48	0.20	0.28	0.25						

*Inches per hour = Pump flow, GPM \times .0022 / Acres Serviced.

**Net Water Applied = Gross water applied (inches) x 0.9 application efficiency.

			Irrig	ation	Schedu	ıling "	'Rep	lace Wha	at's Us	sed" Te	mplate	- Metrio	: Units
Fie	ld <u>we</u> s	st	Zo	one1	Hec	tares	4 So	oil Type <u>sar</u>	1dy loar	n_ Applie	d Water/M	leter <u>40</u> n	nm
Day	Pump Pressure - kPa	Pump Flow - m³/hr	Application Rate - Inches mm/hr*	Hours of Operation	Gross Water Applied - mm	Net Water Applied - mm**	Crop ET mm/day	"Banked Water"	Net Water Banked	Soil Moisture Status - Site 1	Soil Moisture Status - Site 2	Soil Moisture Status - Site 3	Soil Moisture Status - Site 4
1	350	90	2.25	6	13.5	12.2	5.1	7.1	7.1				
2	350	90	2.25	0	0.0	0.0	6.4	-6.4	0.7				
3	350	90	2.25	6	13.5	12.2	7.6	4.5	5.3				
4	350	90	2.25	4	9.0	8.1	7.6	0.5	5.7				
5	350	90	2.25	0	0.0	0.0	6.4	-6.4	-0.6				
6	350	90	2.25	6	13.5	12.2	7.6	4.5	3.9				
7	350	90	2.25	6	13.5	12.2	8.9	3.3	7.2				
8	350	90	2.25	4	9.0	<i>8</i> .1	10.2	-2.1	5.1				
9	350	90	2.25	6	13.5	12.2	10.2	2.0	7.1				
10	350	90	2.25	6	13.5	12.2	8.9	3.3	10.4				
11	350	90	2.25	0	0.0	0.0	7.6	-7.6	2.7				
12	350	90	2.25	6	13.5	12.2	7.6	4.5	7.3				
13	350	90	2.25	0	0.0	0.0	7.6	-7.6	-0.3				
14	350	90	2.25	6	13.5	12.2	5.1	7.1	6.7				

* Millimetres per hour = Pump Flow, m3/hr x 1000/ (hectares x 10,000)

** Net Water Applied = Gross water Applied (mm) x 0.9 application efficiency.

In both of these examples note that soil texture, available water and soil moisture conditions must be known. Instruments are available to help determine these values, but simple field analysis is possible as well using readily available resources from government and academic sources. The following will discuss how Soil Texture, MAD, wetting patterns and the desire to avoid puddling influence the irrigation schedule beyond what the Water Balance Equations predict.

Soil Texture

Soil texture affects irrigation scheduling in two important ways. First, it determines how quickly the soil accepts water, and it should be known prior to design since it influences emission device flow rate and spacing. An application rate, or precipitation rate as it's sometimes called, should have been chosen that does not exceed the soil's ability to accept the water. Otherwise, runoff or puddling will occur. The adjacent Maximum Precipitation Rates table (USDA, 1997) shows that on heavier soils, runoff will occur with an

Maximu	m Prec	ipit	ation R	ates	ə - Engl	ish l	Jnits*	
Slope	0-59	6	5-89	%	8-12	.%	12%	5+
Soil Coverage	Covered	Bare	Covered	Bare	Covered	Bare	Covered	Bare
Soil Composition								
Coarse sandy	2.00	2.00	2.00	1.50	1.50	1.00	1.00	0.50
Coarse sandy soils over compact subsoil	1.75	1.50	1.25	1.00	1.00	0.75	0.75	0.40
Uniform light sandy loam	1.75	1.00	1.25	0.80	1.00	0.60	0.75	0.40
Light sandy loams over compact subsoil	1.25	0.75	1.00	0.50	0.75	0.40	0.50	0.30
Uniform silt loams	1.00	0.50	0.80	0.40	0.60	0.30	0.40	0.20
Silt loams over compact soil	0.60	0.30	0.50	0.25	0.40	0.15	0.30	0.10
Heavy clay or clay loam	0.20	0.15	0.15	0.10	0.12	0.08	0.10	0.06

¹ The maximum PR values, listed in inches/hour, are suggested by the United States Department of Agriculture. The values are average and may vary with respect to actual soil and ground cover conditions.

Maximu	m Prec	eipite	ation R	ates	- Met i	ric U	nits*	
Slope	0-5%	%	5-8	%	8-12	%	12%	5 +
Soil Coverage	Covered	Bare	Covered	Bare	Covered	Bare	Covered	Bare
Soil Composition Coarse sandy	50	50	50	38	38	25	25	13
Coarse sandy soils over compact subsoil	45	38	30	25	25	19	19	10
Uniform light sandy loam	45	25	30	20	25	15	19	10
Light sandy loams over compact subsoil	30	19	25	13	19	10	13	8
Uniform silt loams	25	13	20	10	15	8	10	5
Silt loams over compact soil	15	8	13	6	10	4	8	3
Heavy clay or clay loam	5	4	4	3	3	2	3	1.5

* The maximum PR values, listed in mm/hr, are suggested by the United States Department of Agriculture. The values are average and may vary with respect to actual soil and ground cover conditions.

application rate as low as .15 inches or 3 to 4 mm per hour. One of the advantages of drip irrigation systems is that application rates are often far below the maximum values shown in this chart, and pose less risk to create runoff than sprinkler systems, especially on bare, sloped ground.

Second, soil texture determines how much water the root zone water reservoir holds per foot, and how much of that water is available to the plant. The adjacent Soil Water Content illustration shows three levels of soil moisture: saturation, field capacity and wilting point. Much of the water in a saturated field will be lost to gravity and cannot be used for plant growth. After about 24 hours, the soil will achieve "field capacity" where water is available for plant use. At the wilting point, water is still present in the soil, but is held so tightly by the soil particles that it's unavailable for plant use. The difference between field capacity and wilting point is considered water that is "available" to the plant. This is the soil moisture that growers manage to optimize crop production.

The adjacent Available Soil Moisture chart (Plaster, 2003) shows the range of moisture, in inches, that is potentially available to plant roots for different soil textures. Note that a sandy soil only has about .5 – 1.0 inches of available water per foot of depth (or 40-90 mm per meter of depth), whereas a loam or silt loam has as much as 2.0 to 2.8 inches of available water per foot of depth (or 170-230 mm per meter of depth).

Available Soil Moisture - English Units						
Soil Texture	Inches per Inch	Inches per Foot				
Coarse sand and gravel	0.02 — 0.06	0.2 — 0.7				
Sand	0.04 — 0.09	0.5 — 1.1				
Loamy sand	0.06 — 0.12	0.7 — 1.4				
Sandy loam	0.11 — 0.15	1.3 — 1.8				
Fine sandy loam	0.14 — 0.18	1.7 — 2.2				
Loam and silt loam	0.17 — 0.23	2.0 — 2.8				
Clay loam	0.14 — 0.21	1.7 — 2.5				
Silty clay loam	0.14 — 0.21	1.7 — 2.5				
Silty clay and clay	0.13 — 0.18	1.6 — 2.2				

Available Soil Moisture - Metric Units*						
Soil Texture	mm/cm	mm/meter				
Coarse sand and gravel	0.2 — 0.6	20 — 60				
Sand	0.4 — 0.9	40 — 90				
Loamy sand	0.6 — 1.2	60 — 120				
Sandy loam	1.1 — 1.5	110 — 150				
Fine sandy loam	1.4 — 1.8	140 — 180				
Loam and silt loam	1.7 — 2.3	170 — 230				
Clay loam	1.4 — 2.1	140 — 210				
Silty clay loam	1.4 — 2.1	140 — 210				
Silty clay and clay	1.3 — 1.8	130 — 180				

* metricated version of original chart (Plaster, 2003)

This is further illustrated in the illustration below, "The Effect of Soil Texture on Available Water" (Plaster, 2003). Soils that have limited available water must be managed very carefully because if crop water use cannot be replaced on a daily basis, if crops are shallow rooted, and/or if crop water usage is high, available water could become depleted and plants could wilt, possibly permanently. Irrigators must manage the available water in the root zone so that optimal crop production is achieved.

Soil texture may be determined by comparing the results of a Sedimentation Test (see Appendix for procedure) with the adjacent Soil Texture triangle (www.soilsensor.com). Soil texture may also be determined by evaluating a tablespoon of soil with the palm of the hand and comparing it with information in the Soil Texture Identification Key (Thien, 1979) on the following page. Once texture is known, potential available water may be estimated using the table above. To determine actual moisture status of a known texture, the Feel Method 30 may be used as illustrated in the 20 table on the following pages titled, "Soil Moisture, Feel and 10 Appearance Description" (USDA, 1998). Pictures of a Fine Sand and Loamy fine 100 90 Sand are included to illustrate.

Management Allowable Depletion (MAD)

MAD is a term that describes how much of the available water is allowed to deplete before it's replaced with irrigation. This is largely an agronomic decision because water availability is often used to manipulate crop growth and quality. In some cases, a full reservoir is desired and water is replaced as it is depleted as discussed in the Water Balance Method. In other cases, some level of plant water stress may be desired and maintained via the irrigation schedule. In any case, the Water Balance Method may be used to manage the soil water reservoir. The scheduler must simply determine whether the reservoir is to be kept full or depleted to some level.

Sometimes MAD is dictated by system or cultural logistics. It may be inconvenient or impossible to fill the soil reservoir on every block each day, or cultural activities may prohibit irrigation. However, using drip often eliminates these issues, because:

- Drip application rates are low, so more acres may be irrigated at once.
- Drip systems typically apply water to the crop root zone and/or beds only and leave furrows and drive roads dry, allowing irrigation to occur — even when field operations (including harvest) are taking place.
- Since nutrients are often applied through the drip system, tractor applications can be minimized or even eliminated.

In summary, agronomic reasons rather than logistics usually dictate the drip schedule.

Soi	Soil Moisture, Feel and Appearance Descriptions							
Available Water *	Sand	Sandy Loam	Loam/Silt Loam	Clay Loam/Clay				
Above field capacity	Free water appears when soil is bounced in hand.	Free water is released with kneading.	Free water can be squeezed out.	Puddles-free water forms on surface.				
100% (field capacity)	Upon squeezing, no free water appears on soil, but wet outline of ball is left on hand. (1 in/ft, 83 mm/m) §	Appears very dark. Upon squeezing, no free water appears on soil, but wet outline of ball is left on hand. (1.5 in/ft, 125 mm/m)	Appears very dark. Upon queezing, no free water appears on soil, but wet outline of ball is left on hand. Will form about a 1" (25 mm) ribbon. (2.0 in/ft, 167 mm/m)	Appears very dark. Upon squeezing, no free water appears on soil, but wet outline of ball is left on hand. Will form about a 2" (50 mm) ribbon. (2.5 in/ft, 208 mm/m)				
75–100%	Tends to stick together slightly, sometimes forms a weak ball with pressure. (0.8–1.0 in/ft, 67-83 mm/m)	Quite dark. Forms weak ball, breaks easily. Will not stick. (1.2 –1.5 in/ft, 100 - 125 mm/m)	Dark color. Forms a very pliable ball. Sticks readily if high in clay. (1.5 – 2.0 in/ft, 125 - 167 mm/m)	Dark color. Easily ribbons out between fingers-has slick feeling. (1.9-2.5 in/ft, 158 - 208 mm/m)				
50-75%	Appears to be dry, will not form a ball with pressure. (0.5–0.8 in/ft, 42 - 67 mm/m)	Fairly dark. Tends to form a ball with pressure, but seldom holds together. (0.8–1.2 in/ft, 67 - 100 mm/m)	Fairly dark. Forms a somewhat plastic ball. Will sometimes stick slightly with pressure. (1.0–1.5 in/ft, 83 - 125 mm/m)	Fairly dark. Forms a ball, ribbons out between thumb and forefinger. (1.2–1.9 in/ft, 100 - 158 mm/m)				
25-50%	Appears to be dry, will not form a ball with pressure. (0.2–0.5 in/ft, 17-42 mm/m)	Light colored. Appears to be dry, will not form a ball. (0.4–0.8 in/ft, 33 - 67 mm/m)	Light colored, somewhat crumbly– holds together with pressure.(0.5–1.0in/ft, 42 - 83 mm/m)	Slightly dark, somewhat pliable. Will form a ball under pressure. (0.6–1.2 in/ft, 50 - 100 mm/m)				
0–25%	Dry, loose, single- grained – flows through fingers. (0–0.2 in/ft, 0-17 mm/m)	Very slight color. Dry, loose-flows through fingers. (0–0.4 in/ft, 0 - 33 mm/m)	Slight color. Powdery, dry, sometimes slightly crusted– easily broken down to a powdery condition. (0–0.5 in/ft , 0 - 42 mm/m)	Slight color. Hard, baked, cracked– sometimes with loose crumbs on surface. (0–0.6 in/ft, 0 - 50 mm/m)				

* Available water is the difference between field capacity and permanent wilting point.

§ Bold-face numbers in parentheses represent available water contents expressed as inches of water per foot, or mm of water per meter, of soil depth.

Appearance of sandy clay loam, loam and silt loam soils at various soil moisture conditions (left to right): 25-50%; 50-75%; 75-100%

Desired Wetting Pattern

Water movement in the soil is dictated by capillary action prior to saturation as shown in the adjacent photo where water is "wicking" up the bed against the force of gravity. Wetting patterns are primarily dictated by soil texture, but may also be influenced by soil tilth, structure, compaction and chemistry, emitter flow rate and spacing, lateral

Probe the soil to ensure water isn't traveling beyond the root zone. spacing and depth of burial, system pressure and irrigation schedule. In general, water from an emitter will exhibit more lateral, horizontal

movement in heavier clay soils, and more vertical, downward movement in lighter sandy soils. The following pictures and figures illustrate the relative shapes of wetting patterns that might be created under an emitter in various soil types, flow rates and operating conditions:

Note that emitter flow rate will also determine wetting pattern as illustrated in the adjacent laboratory photos, where emitter flow rate varied while the soil and operating duration were consistent (Mikkelsen, 2009). Rate of water delivery determines the volume of wetted soil

The adjacent diagram illustrates how water typically moves laterally and downward during the first 24 hours of discharge from a 1.0 l/h emitter (Mikkelsen, 2009).

Typical wetted soil volume following a one-hour irrigation

Monitoring Wetting Patterns

Just as irrigation managers monitor soil moisture, wetting patterns should also be monitored to ensure desired results. The wetted surface diameter should be observed, and then the subsurface wetting pattern "mapped" by systematic probing and evaluation of the soil moisture. If excessive moisture is evident beyond the root zone or planted bed, then the schedule should be adjusted accordingly. The adjacent picture shows the startup wetting pattern on the left, and the wetting pattern after 24 hours of operation on the right. Note how a uniform corridor of moisture was created across the entire planting bed.

Pulse Irrigation

Pulse irrigation, the practice of applying water in short durations with intervals in between, is sometimes used to encourage lateral water movement. Despite various research and anecdotal experiences, there's little conclusive evidence that pulse irrigation significantly improves wetting patterns. Nevertheless, pulse irrigation should remain an option if horizontal water movement is a challenge. Instead of applying the desired amount of water in a single irrigation event, two events of shorter duration could be scheduled with

Achieve good wetting patterns using closely spaced emitters and pulsing techniques. an interval in between. For instance, instead of running the system once for four continuous hours, run it for two hours, turn the system off for an hour, and then run it again for two hours. Careful monitoring and observation will help you determine whether this tactic is effective in your specific conditions.

Closely Spaced Emitters

The use of closely spaced emitters is rapidly gaining in popularity due to the ability to achieve superior wetting patterns more quickly than with

wider spaced emitters. The photos below (Klauzer, 2009) compare the wetting patterns of emitters spaced at 12 and 8 inches (30 and 20 cm), and the subsequent "wetted corridor of moisture" achieved down and across the bed after 30 hours of irrigation with the 8-inch (20 cm) spacing. Such rapid "blackening of the beds" is highly desirable by many growers, especially when setting transplants or germinating seeds.

59

Toro Aqua-Traxx drip tape, 12-inch (30 cm) emitter spacing, .22 gpm/100 ft. (3.09 Lpm/100) on left, 8-inch (20 cm) emitter spacing, .22 gpm/100 ft. (3.09 Lpm/100) on right.

Toro Aqua-Traxx drip tape, 12-inch (30 cm) emitter spacing, .22 gpm/100 ft. (3.09 Lpm/100) on left, 8-inch (20 cm) emitter spacing, .22 gpm/100 ft. (3.09 Lpm/100) on right after 30 hours of irrigation. Note the 12-inch spacing on left has more scalloping.

Avoiding Puddling and Runoff

Irrigation schedules may also be adjusted to avoid runoff or puddling due to heavy soil conditions and/ or chemical problems, both of which result in low infiltration rates. As mentioned earlier, the choice of low application rates will help reduce runoff in low infiltration rate soils such as clays and clay loams. Pulse irrigating in frequent, short durations may also help avoid runoff and puddling.

In the case of saline and/or sodic soil conditions where soil and/or water chemistry is the culprit, leaching in the presence of gypsum will often exchange detrimental sodium with beneficial calcium to condition the soil (see Chapter 4 "Fertigation and Chemigation" for more information). If lime is present in the soil, the application of acid may accomplish the same benefit. The addition of organic matter may also prove beneficial. Ultimately, the detrimental salts must be leached out of the root zone.

In some cases, conditioning the water may prove beneficial. Some growers have reported success in applying gypsum through the drip irrigation system, but extreme caution should be practiced since clogging may occur. Other commercial water conditioners are marketed with varied results. Consult with an expert before spending time, money and energy on this activity.

C. Monitoring Equipment

There are a number of ways to predict crop water use and measure soil moisture content and plant water stress. While historical, actual and predictive crop water use data is typically available from local farm advisors or universities, soil moisture and plant water stress must be measured on the farm.

Soil moisture may be accurately estimated using a variety of methods. First, soil moisture may be measured by an experienced hand using the "feel method"mentioned earlier. Second, soil moisture may be measured via porous body devices such as granular matrix sensors (GMS) and tensiometers as shown respectively in the illustrations adjacent top and on the next page (courtesy of The Irrometer Company). Note the data logger output to the right.

Tensiometers measure the vacuum, in centibars, that plant roots exert on the soil in contact with the device, while GMS devices measure the electrical resistance, in centibars, of the GMS sensor that is in contact with the soil. In both cases, the higher the centibar readings, the drier the soil. In addition, both sensors may be read manually in the field, or can transmit data automatically to a data logger (example shown on previous page). However, tensiometers must be routinely serviced to replace the water that is lost to suction as the soil becomes drier.

Results must be interpreted to assist in irrigation scheduling decisions. For example, a given tensiometer reading can translate into widely different soil moisture content depending on the soil texture. The graph below shows Available Water Depletion, Percent vs. Centibar Reading (Van der Gulik, 1999). Note that a reading of 50 centibars translates into a 70% available water depletion in a loamy sand, but less than 15% soil moisture depletion in a clay. Thus, in lighter soils that have less total water holding capacity, growers may wish to maintain lower tensiometer readings than they would for heavier soils. It is clear that a thorough knowledge of the field's soil texture must be known to interpret the data in a useful manner.

60

Third, soil moisture may be measured via other technologies including time domain reflectometry (TDR),

frequency domain reflectometry (FDR), and neutron probes. The choice of technology depends on a number of factors including the size of the farm, variability of soils, availability of labor, desired accuracy, ability to automate, cost, and available local support. Since results must be interpreted, training on their use and interpretation are often the most important considerations.

Plant water stress may be measured in a number of ways as well. Visual observation of the crop will readily reveal such indicators as leaf rolling, color changes, wilting, or fruit abscission to the trained eye. However, these indicators are subjective and qualitative. Pressure bombs and infrared thermometers are technologies that provide a quantitative measurement of plant water stress. Whatever the method, plant water stress measurements are typically used in conjunction with atmospheric (crop water use) and soil moisture measurements to predict and decide when to irrigate and for how long. For best results, local technology experts should be consulted to calibrate atmospheric, soil and plant data, and to interpret results. Ideally, irrigation scheduling should use both technical data and localized knowledge.

D. Run-Time Calculators

The following irrigation run-time calculators for permanent and row crops may be used to integrate application rate, available water in root zone, crop water requirements and recommended run-time.

Checkb	ook Style	Irrigation Run Ti	me Calcula	ator for Em	itters/Mic	ros - Engli	sh Units	
Complet	e steps 1–6	below to determine	e irrigation	system run	time per day	y.		
Step 1:	To determine Rate, enter fo right. As an e with 0.6 gph	e system Net Application ur bolded values to the example, dripline laterals emitters spaced every	Emitter/Micro flow, gph	Emitter Spacing (feet)	Lateral Spacing (feet)	Application Uniformity (decimal)	Net Application Rate (inches per hour)	
	4 feet are spa application u resulting net	ced 10 feet apart. The niformity is 90%. The application rate is:	0.6	4	10	0.90	0.022	
Step 2:	Enter Available example below deep, so there	e Water in crop rootzone for w, the soil is a loam with 1 in is a total of 5 inches of avail	r Day 1 only . Thi ich of available v able water to ma	s is dependent o vater per foot wh anage. It is assun	n soil texture and en at field capac ned the rootzone	d rootzone dept ity. The root zoo is at field capad	:h. In the ne is 5 feet city on Day 1.	
Step 3:	Enter crop w per day the f	ater use for each day. As irst week, 0.20 inches per	an example, 14 day the secon	4 days have alre d week.	eady been filled	out below: 0	.10 inches	
Step 4:	Enter amount may be allow has been set a	Enter amount of water to be applied in blue column. The amount may be the same as daily crop water use, or a deficit may be allowed to build up if a Management Allowable Depletion, MAD, has been set. In the example below, the MAD has been set at 0.20 inches, so irrigations have been scheduled when Available Water approached 4.8 inches.						
	Enter how much rain fall has occurred, if any.							
Step 5:	Enter how m	uch rain fall has occurred	, if any.					
Step 5: Step 6:	Enter how m Read irrigatio	uch rain fall has occurred n run time in hours or min	, if any. utes per day. Ir	rigation Run Tin	ne = Amount to	be applied/ap	plication rate.	
Step 5: Step 6: Summary:	Enter how m Read irrigatio Step 1: Calculate net application rate above.	uch rain fall has occurred n run time in hours or min Step 2: Enter Available Water (in inches) in Crop Root Zone for Day 1 only!	, if any. utes per day. Ir Step 3: Enter Crop Water Use, (in inches) for each day.	rigation Run Tin Step 4: Enter the amount of water (in inches) to be applied.	ne = Amount to Step 5: Enter the net amount of Rainfall (if any) (in inches).	be applied/ap Ste Read irrig time in minutes	plication rate. p 6: gation run hours or per day.	
Step 5: Step 6: Summary:	Enter how m Read irrigatio Step 1: Calculate net application rate above.	uch rain fall has occurred n run time in hours or min Step 2: Enter Available Water (in inches) in Crop Root Zone for Day 1 only! Available Water in crop rootzone at beginning of day, inches	, if any. utes per day. Ir Step 3: Enter Crop Water Use, (in inches) for each day. Daily Crop Water Use, inches	rigation Run Tin Step 4: Enter the amount of water (in inches) to be applied. Amount of water to be applied, inches	ne = Amount to Step 5: Enter the net amount of Rainfall (if any) (in inches). Net Rainfall, inches	be applied/ap Ste Read irrig time in minutes Irrigation run time, hours per day	plication rate. p 6: gation run hours or per day. Irrigation run time, minutes per day	
Step 5: Step 6: Summary:	Enter how m Read irrigatio Step 1: Calculate net application rate above. Day	uch rain fall has occurred n run time in hours or min Step 2: Enter Available Water (in inches) in Crop Root Zone for Day 1 only! Available Water in crop rootzone at beginning of day, inches 5.00	, if any. utes per day. Ir Step 3: Enter Crop Water Use, (in inches) for each day. Daily Crop Water Use, inches 0.10	rigation Run Tin Step 4: Enter the amount of water (in inches) to be applied. Amount of water to be applied, inches	ne = Amount to Step 5: Enter the net amount of Rainfall (if any) (in inches). Net Rainfall, inches 0.0	be applied/ap Ste Read irrig time in minutes Irrigation run time, hours per day 0.00	plication rate. p 6: gation run hours or per day. Irrigation run time, minutes per day 0	
Step 5: Step 6: Summary:	Enter how m Read irrigatio Step 1: Calculate net application rate above. Day	uch rain fall has occurred n run time in hours or min Step 2: Enter Available Water (in inches) in Crop Root Zone for Day 1 only! Available Water in crop rootzone at beginning of day, inches 5.00 4.90	, if any. utes per day. Ir Step 3: Enter Crop Water Use, (in inches) for each day. Daily Crop Water Use, inches 0.10 0.10	rigation Run Tin Step 4: Enter the amount of water (in inches) to be applied. Amount of water to be applied, inches 0.20	ne = Amount to Step 5: Enter the net amount of Rainfall (if any) (in inches). Net Rainfall, inches 0.0 0.0	be applied/ap Ste Read irrig time in minutes Irrigation run time, hours per day 0.00 9.26	plication rate. p 6: gation run hours or per day. Irrigation run time, minutes per day 0 556	
Step 5: Step 6: Summary:	Enter how m Read irrigatio Step 1: Calculate net application rate above. Day	uch rain fall has occurred n run time in hours or min Step 2: Enter Available Water (in inches) in Crop Root Zone for Day 1 only! Available Water in crop rootzone at beginning of day, inches 5.00 4.90 5.00	, if any. utes per day. Ir Step 3: Enter Crop Water Use, (in inches) for each day. Daily Crop Water Use, inches 0.10 0.10 0.10	rigation Run Tin Step 4: Enter the amount of water (in inches) to be applied. Amount of water to be applied, inches 0.20	ne = Amount to Step 5: Enter the net amount of Rainfall (if any) (in inches). Net Rainfall, inches 0.0 0.0 0.0 0.0	be applied/ap Ste Read irrig time in minutes Irrigation run time, hours per day 0.00 9.26 0.00	plication rate. p 6: gation run hours or per day. Irrigation run time, minutes per day 0 556 0	
Step 5: Step 6: Summary:	Enter how m Read irrigatio Step 1: Calculate net application rate above. Day	uch rain fall has occurred n run time in hours or min Step 2: Enter Available Water (in inches) in Crop Root Zone for Day 1 only! Available Water in crop rootzone at beginning of day, inches 5.00 4.90 5.00 4.90	, if any. utes per day. Ir Step 3: Enter Crop Water Use, (in inches) for each day. Daily Crop Water Use, inches 0.10 0.10 0.10 0.10	rigation Run Tin Step 4: Enter the amount of water (in inches) to be applied. Amount of water to be applied, inches 0.20	ne = Amount to Step 5: Enter the net amount of Rainfall (if any) (in inches). Net Rainfall, inches 0.0 0.0 0.0 0.0 0.0 0.0 0.0	be applied/ap Ste Read irrig time in minutes Irrigation run time, hours per day 0.00 9.26 0.00 0.00 0.00	plication rate. p 6: gation run hours or per day. Irrigation run time, minutes per day 0 556 0 0 0	
Step 5: Step 6: Summary:	Enter how m Read irrigatio Step 1: Calculate net application rate above. Day Day	uch rain fall has occurred n run time in hours or min Step 2: Enter Available Water (in inches) in Crop Root Zone for Day 1 only! Available Water in crop rootzone at beginning of day, inches 5.00 4.90 5.00 4.90 5.00	, if any. utes per day. Ir Step 3: Enter Crop Water Use, (in inches) for each day. Daily Crop Water Use, inches 0.10 0.10 0.10 0.10 0.10	rigation Run Tin Step 4: Enter the amount of water (in inches) to be applied. Amount of water to be applied, inches 0.20	ne = Amount to Step 5: Enter the net amount of Rainfall (if any) (in inches). Net Rainfall, inches 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	be applied/ap Ste Read irrig time in minutes Irrigation run time, hours per day 0.00 9.26 0.00 0.00 13.89 0.00	plication rate. p 6: gation run hours or per day. Irrigation run time, minutes per day 0 556 0 0 833 0	
Step 5: Step 6: Summary:	Enter how m Read irrigatio Step 1: Calculate net application rate above. Day Day 1 2 3 4 5 6 7	uch rain fall has occurred n run time in hours or min Step 2: Enter Available Water (in inches) in Crop Root Zone for Day 1 only! Available Water in crop rootzone at beginning of day, inches 5.00 4.90 5.00 4.90 4.90 5.00 4.90	, if any. utes per day. Ir Step 3: Enter Crop Water Use, (in inches) for each day. Daily Crop Water Use, inches 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10	rigation Run Tin Step 4: Enter the amount of water (in inches) to be applied. Amount of water to be applied, inches 0.20 0.30	ne = Amount to Step 5: Enter the net amount of Rainfall (if any) (in inches). Net Rainfall, inches 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	be applied/ap Ste Read irrig time in minutes Irrigation run time, hours per day 0.00 9.26 0.00 9.26 0.00 13.89 0.00 0.00 0.00	plication rate. p 6: gation run hours or per day . Irrigation run time, minutes per day 0 556 0 0 833 0 0 0	
Step 5: Step 6: Summary:	Enter how m Read irrigatio Step 1: Calculate net application rate above. Day Day 1 2 3 4 5 6 7 7 8	uch rain fall has occurred n run time in hours or min Step 2: Enter Available Water (in inches) in Crop Root Zone for Day 1 only! Available Water in crop rootzone at beginning of day, inches 5.00 4.90 5.00 4.90 4.80 5.00 4.90 4.80	, if any. utes per day. Ir Step 3: Enter Crop Water Use, (in inches) for each day. Daily Crop Water Use, inches 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.1	rigation Run Tin Step 4: Enter the amount of water (in inches) to be applied. Amount of water to be applied, inches 0.20 0.30	ne = Amount to Step 5: Enter the net amount of Rainfall (if any) (in inches). Net Rainfall, inches 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	be applied/ap Ste Read irrig time in minutes Irrigation run time, hours per day 0.00 9.26 0.00 9.26 0.00 9.26 0.00 13.89 0.00 0.00 13.89 0.00 0.00 18.52	plication rate. p 6: gation run hours or per day . Irrigation run time, minutes per day 0 556 0 0 833 0 0 1111	
Step 5: Step 6: Summary:	Enter how m Read irrigatio Step 1: Calculate net application rate above. Day Day 1 2 3 4 5 6 7 7 8 9	uch rain fall has occurred n run time in hours or min Step 2: Enter Available Water (in inches) in Crop Root Zone for Day 1 only! Available Water in crop rootzone at beginning of day, inches 5.00 4.90 5.00 4.90 4.80 5.00 4.90 4.80 5.00	, if any. utes per day. Ir Step 3: Enter Crop Water Use, (in inches) for each day. Daily Crop Water Use, inches 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.20 0.20	rigation Run Tin Step 4: Enter the amount of water (in inches) to be applied. Amount of water to be applied, inches 0.20 0.30	ne = Amount to Step 5: Enter the net amount of Rainfall (if any) (in inches). Net Rainfall, inches 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	be applied/ap Ste Read irrig time in minutes Irrigation run time, hours per day 0.00 9.26 0.00 9.26 0.00 0.00 13.89 0.00 0.00 13.89 0.00 0.00 18.52 0.00	plication rate. p 6: gation run hours or per day. Irrigation run time, minutes per day 0 556 0 0 833 0 0 11111 0	
Step 5: Step 6: Summary:	Enter how m Read irrigatio Step 1: Calculate net application rate above. Day Day 1 2 3 4 5 6 7 8 9 10	uch rain fall has occurred n run time in hours or min Step 2: Enter Available Water (in inches) in Crop Root Zone for Day 1 only! Available Water in crop rootzone at beginning of day, inches 5.00 4.90 4.80 5.00 4.90 4.80 5.00 4.80 5.00 4.80 5.00 4.80	, if any. utes per day. Ir Step 3: Enter Crop Water Use, (in inches) for each day. Daily Crop Water Use, inches 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.20 0.20 0.20	rigation Run Tin Step 4: Enter the amount of water (in inches) to be applied. Amount of water to be applied, inches 0.20 0.30 0.30	ne = Amount to Step 5: Enter the net amount of Rainfall (if any) (in inches). Net Rainfall, inches 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	be applied/ap Ste Read irrig time in minutes Irrigation run time, hours per day 0.00 9.26 0.00 9.26 0.00 9.26 0.00 13.89 0.00 0.00 13.89 0.00 13.52 0.00 18.52	plication rate. p 6: gation run hours or per day . Irrigation run time, minutes per day 0 556 0 0 833 0 0 11111 0	
Step 5: Summary:	Enter how m Read irrigatio Step 1: Calculate net application rate above. Day Day 1 2 3 4 5 6 7 7 8 9 10 11	uch rain fall has occurred n run time in hours or min Step 2: Enter Available Water (in inches) in Crop Root Zone for Day 1 only! Available Water in crop rootzone at beginning of day, inches 5.00 4.90 4.90 4.80 5.00 4.90 4.80 5.00 4.80 5.00 4.90	, if any. utes per day. Ir Step 3: Enter Crop Water Use, (in inches) for each day. Daily Crop Water Use, inches 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.20 0.20 0.20 0.20 0.20	rigation Run Tin Step 4: Enter the amount of water (in inches) to be applied. Amount of water to be applied, inches 0.20 0.30 0.40 0.40	ne = Amount to Step 5: Enter the net amount of Rainfall (if any) (in inches). Net Rainfall, inches 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	be applied/ap Ste Read irrig time in minutes Irrigation run time, hours per day 0.00 9.26 0.00 9.20 0.00 9.20 0.00 9.20 0.00 9.20 0.00 0.0	plication rate. p 6: gation run hours or per day. Irrigation run time, minutes per day 0 556 0 0 833 0 0 11111 0 11111 0	
Step 5: Summary:	Enter how m Read irrigatio Step 1: Calculate net application rate above. Day Day 1 2 3 4 5 6 7 8 9 10 11 12 2	uch rain fall has occurred n run time in hours or min Step 2: Enter Available Water (in inches) in Crop Root Zone for Day 1 only! Available Water in crop rootzone at beginning of day, inches 5.00 4.90 4.90 4.80 5.00 4.90 4.80 5.00 4.80 5.00 4.80 5.00 4.80 5.00 4.80 5.00	, if any. utes per day. Ir Step 3: Enter Crop Water Use, (in inches) for each day. Daily Crop Water Use, inches 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.2	rigation Run Tin Step 4: Enter the amount of water (in inches) to be applied. Amount of water to be applied, inches 0.20 0.30 0.30 0.40 0.40	ne = Amount to Step 5: Enter the net amount of Rainfall (if any) (in inches). Net Rainfall, inches 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	be applied/ap Ste Read irrig time in minutes Irrigation run time, hours per day 0.00 9.26 0.00 9.26 0.00 9.26 0.00 13.89 0.00 13.89 0.00 13.89 0.00 18.52 0.00 18.52 0.00 18.52 0.00 18.52 0.00	plication rate. p 6: gation run hours or per day. Irrigation run time, minutes per day 0 556 0 0 833 0 0 11111 0 11111 0	
Step 5: Summary:	Enter how m Read irrigatio Step 1: Calculate net application rate above. Day Day 1 2 3 4 5 6 7 7 8 9 10 11 11 12 13	uch rain fall has occurred n run time in hours or min Step 2: Enter Available Water (in inches) in Crop Root Zone for Day 1 only! Available Water in crop rootzone at beginning of day, inches 5.00 4.90 4.80 5.00 4.90 4.80 5.00 4.80 5.00 4.80 5.00 4.80 5.00 4.80 5.00 4.80 5.00 4.80 5.00 4.80 5.00 4.80 5.00 4.80 5.00 4.80 5.00 4.80	, if any. utes per day. Ir Step 3: Enter Crop Water Use, (in inches) for each day. Daily Crop Water Use, inches 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.20 0.20 0.20 0.20 0.20 0.20 0.20	rigation Run Tin Step 4: Enter the amount of water (in inches) to be applied. Amount of water to be applied, inches 0.20 0.30 0.30 0.40 0.40	ne = Amount to Step 5: Enter the net amount of Rainfall (if any) (in inches). Net Rainfall, inches 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	be applied/ap Ste Read irrig time in minutes Irrigation run time, hours per day 0.00 9.26 0.00 9.26 0.00 13.89 0.00 13.89 0.00 13.89 0.00 13.89 0.00 13.52 0.00 18.52 0.00	plication rate. p 6: gation run hours or per day. Irrigation run time, minutes per day 0 556 0 0 556 0 0 11111 0 11111 0 11111 0 11111	

Analysis of example: The first week, crop water use was .10" per day, and irrigations were scheduled on day 2 and day 5 to replace depleted water. On day 8, crop water use doubled to .20" per day for the rest of the week, so irrigations were scheduled to apply .40" every other day to replace depleted water.

Row Crop Example - English Units

Checkbook Style Irrigation Run Time Calculator for Tape - English Units

Comple	te steps 1–6	below to determine i	irrigation sy	vstem run tir	ne per day.			
Step 1:	To determine system Net Application Rate, enter three bolded values to the right. As an example, Q-100 tape with 0.34 gpm/100 ft. is laid on 40		Tape Q-10	Tape Q-100 (gpm/100 ft.)		Application Uniformity (decimal)	Net Application Rate (inches per hour)	
	inch centers (3.33 ft. lateral spacing). The application uniformity is 90%. The resulting net application rate is:		0.34		3.3	0.9	0.09	
Step 2:	Enter Availat In the examp root zone is	Enter Available Water in crop rootzone for Day 1 only . This is dependent on soil texture and rootzone depth. In the example below, the soil is sandy with 0.50 in. of available water per foot when at field capacity. The root zone is 1 ft. deep, so there is. 50" of available water to manage.						
Step 3:	Enter crop w day the first	rater use for each day. As week, 0.07 in. per day the	an example, 1 second week.	4 days have alr	eady been filled	out below: 0	.05 in. per	
Step 4:	Enter amour a deficit may below, the M	nt of water to be applied i y be allowed to build up if IAD has been set at. 05", s	n blue column a Managemer o depleted wa	. The amount in Allowable De ater is replaced	may be the same epletion, MAD, h on a daily basis.	e as daily crop as been set. Iı	water use, or n the example	
Step 5:	Enter how m	uch rain fall has occurred	, if any.					
Step 6:	Read irrigatio	on run time in hours or min	utes per day. I	rrigation Run Ti	me = Amount to	be applied/ap	plication rate.	
Summary	: Step 1:	Step 2:	Step 3:	Step 4:	Step 5:	Ste	ep 6:	
		Step 1: Step 2: Step 3: Step 4: Step 5: Step 6:						
	Calculate	Calculate Enter available Enter Crop Enter the Enter the Read irrigation run						
	net	Enter available water (in inches)	Water Use	Enter the amount of	Enter the net amount	Read irrig	gation run hours or	
	application	Enter available water (in inches) in Crop Root Zone	Water Use (in inches)	Enter the amount of water (in	Enter the net amount of Rainfall	Read irrig time in minutes	gation run hours or s per day.	
	application rate above.	Enter available water (in inches) in Crop Root Zone for Day 1 only!	Enter Crop Water Use (in inches) for each day	Enter the amount of water (in inches) to be applied.	Enter the net amount of Rainfall (if any) (in inches).	Read irrig time in minutes	gation run hours or s per day.	
	calculate net application rate above.	Enter available water (in inches) in Crop Root Zone for Day 1 only!	Enter Crop Water Use (in inches) for each day.	Enter the amount of water (in inches) to be applied.	Enter the net amount of Rainfall (if any) (in inches).	Read irrig time in minutes	gation run hours or per day.	
	application rate above.	Enter available water (in inches) in Crop Root Zone for Day 1 only! Available Water in crop rootzone at beginning of	Enter Crop Water Use (in inches) for each day. Daily Crop Water Use,	Enter the amount of water (in inches) to be applied. Amount of water to be	Enter the net amount of Rainfall (if any) (in inches). Net Rainfall, inches	Read irrig time in minutes Irrigation run time, hours	gation run hours or per day. Irrigation run time, minutes	
	Calculate net application rate above.	Enter available water (in inches) in Crop Root Zone for Day 1 only! Available Water in crop rootzone at beginning of day, inches	Enter Crop Water Use (in inches) for each day. Daily Crop Water Use, inches	Enter the amount of water (in inches) to be applied. Amount of water to be applied, inches	Enter the net amount of Rainfall (if any) (in inches). Net Rainfall, inches	Read irrig time in minutes Irrigation run time, hours per day	gation run hours or per day. Irrigation run time, minutes per day	
	Calculate net application rate above. Day	Enter available water (in inches) in Crop Root Zone for Day 1 only! Available Water in crop rootzone at beginning of day, inches	Enter Crop Water Use (in inches) for each day. Daily Crop Water Use, inches	Enter the amount of water (in inches) to be applied. Amount of water to be applied, inches 0.05	Enter the net amount of Rainfall (if any) (in inches). Net Rainfall, inches	Read irrig time in minutes Irrigation run time, hours per day	gation run hours or per day. Irrigation run time, minutes per day 34	
	Calculate net application rate above. Day	Enter available water (in inches) in Crop Root Zone for Day 1 only! Available Water in crop rootzone at beginning of day, inches 0.50 0.50	Enter Crop Water Use (in inches) for each day. Daily Crop Water Use, inches 0.05 0.05	Enter the amount of water (in inches) to be applied. Amount of water to be applied, inches 0.05 0.05	Enter the net amount of Rainfall (if any) (in inches). Net Rainfall, inches 0.0	Read irrig time in minutes Irrigation run time, hours per day 0.56 0.56	gation run hours or per day. Irrigation run time, minutes per day <u>34</u> 34	
	Calculate net application rate above. Day	Enter available water (in inches) in Crop Root Zone for Day 1 only! Available Water in crop rootzone at beginning of day, inches 0.50 0.50	Enter Crop Water Use (in inches) for each day. Daily Crop Water Use, inches 0.05 0.05 0.05	Enter the amount of water (in inches) to be applied. Amount of water to be applied, inches 0.05 0.05 0.05	Enter the net amount of Rainfall (if any) (in inches). Net Rainfall, inches 0.0 0.0 0.0	Read irrig time in minutes Irrigation run time, hours per day 0.56 0.56 0.56	gation run hours or per day. Irrigation run time, minutes per day 34 34 34	
	Calculate net application rate above. Day 1 2 3 4	Enter available water (in inches) in Crop Root Zone for Day 1 only! Available Water in crop rootzone at beginning of day, inches 0.50 0.50 0.50 0.50	Enter Crop Water Use (in inches) for each day. Daily Crop Water Use, inches 0.05 0.05 0.05 0.05	Enter the amount of water (in inches) to be applied. Amount of water to be applied, inches 0.05 0.05 0.05 0.05	Enter the net amount of Rainfall (if any) (in inches). Net Rainfall, inches	Read irrig time in minutes Irrigation run time, hours per day 0.56 0.56 0.56 0.56	gation run hours or per day. Irrigation run time, minutes per day 34 34 34 34	
	Calculate net application rate above. Day 1 2 3 4 5 6	Enter available water (in inches) in Crop Root Zone for Day 1 only! Available Water in crop rootzone at beginning of day, inches 0.50 0.50 0.50 0.50 0.50	Enter Crop Water Use (in inches) for each day. Daily Crop Water Use, inches 0.05 0.05 0.05 0.05 0.05 0.05	Enter the amount of water (in inches) to be applied. Amount of water to be applied, inches 0.05 0.05 0.05 0.05 0.05	Enter the net amount of Rainfall (if any) (in inches). Net Rainfall, inches 0.0 0.0 0.0 0.0 0.0 0.0	Read irrig time in minutes Irrigation run time, hours per day 0.56 0.56 0.56 0.56 0.56 0.56	gation run hours or per day. Irrigation run time, minutes per day 34 34 34 34 34 34 34	
	Calculate net application rate above. Day 1 2 3 4 5 6 7	Enter available water (in inches) in Crop Root Zone for Day 1 only! Available Water in crop rootzone at beginning of day, inches 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.5	Enter Crop Water Use (in inches) for each day. Daily Crop Water Use, inches 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.0	Enter the amount of water (in inches) to be applied. Amount of water to be applied, inches 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.0	Enter the net amount of Rainfall (if any) (in inches). Net Rainfall, inches 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Read irrig time in minutes Irrigation run time, hours per day 0.56 0.56 0.56 0.56 0.56 0.56 0.56 0.56	gation run hours or per day. Irrigation run time, minutes per day 34 34 34 34 34 34 34 34 34 34	
	Calculate net application rate above. Day 1 2 3 4 5 6 7 8	Enter available water (in inches) in Crop Root Zone for Day 1 only! Available Water in crop rootzone at beginning of day, inches 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.5	Enter Crop Water Use (in inches) for each day. Daily Crop Water Use, inches 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.0	Enter the amount of water (in inches) to be applied. Amount of water to be applied, inches 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.0	Enter the net amount of Rainfall (if any) (in inches). Net Rainfall, inches 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Read irrig time in minutes Irrigation run time, hours per day 0.56 0.56 0.56 0.56 0.56 0.56 0.56 0.56	gation run hours or per day. Irrigation run time, minutes per day 34 34 34 34 34 34 34 34 34 34 34 34 34	
	Calculate net application rate above. Day 1 2 3 4 5 6 7 8 9	Enter available water (in inches) in Crop Root Zone for Day 1 only! Available Water in crop rootzone at beginning of day, inches 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.5	Enter Crop Water Use (in inches) for each day. Daily Crop Water Use, inches 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.0	Enter the amount of water (in inches) to be applied. Amount of water to be applied, inches 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.0	Enter the net amount of Rainfall (if any) (in inches). Net Rainfall, inches 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Read irrig time in minutes Irrigation run time, hours per day 0.56 0.56 0.56 0.56 0.56 0.56 0.56 0.56	gation run hours or per day. Irrigation run time, minutes per day 34 34 34 34 34 34 34 34 34 34 34 34 34	
	Calculate net application rate above. Day 1 2 3 4 5 6 7 8 9 10	Enter available water (in inches) in Crop Root Zone for Day 1 only! Available Water in crop rootzone at beginning of day, inches 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.5	Enter Crop Water Use (in inches) for each day. Daily Crop Water Use, inches 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.0	Enter the amount of water (in inches) to be applied. Amount of water to be applied, inches 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.0	Enter the net amount of Rainfall (if any) (in inches). Net Rainfall, inches 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Read irrig time in minutes Irrigation run time, hours per day 0.56 0.56 0.56 0.56 0.56 0.56 0.56 0.56	gation run hours or per day. Irrigation run time, minutes per day 34 34 34 34 34 34 34 34 34 34 34 34 34	
	Calculate net application rate above. Day 1 2 3 4 5 6 7 8 9 10 11	Enter available water (in inches) in Crop Root Zone for Day 1 only! Available Water in crop rootzone at beginning of day, inches 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.5	Enter Crop Water Use (in inches) for each day. Daily Crop Water Use, inches 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.0	Enter the amount of water (in inches) to be applied. Amount of water to be applied, inches 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.0	Enter the net amount of Rainfall (if any) (in inches). Net Rainfall, inches 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Read irrig time in minutes Irrigation run time, hours per day 0.56 0.56 0.56 0.56 0.56 0.56 0.56 0.56	gation run hours or per day. Irrigation run time, minutes per day 34 34 34 34 34 34 34 34 34 34 34 34 34	
	Calculate net application rate above. Day 1 2 3 4 5 6 7 8 9 10 11 12 40	Enter available water (in inches) in Crop Root Zone for Day 1 only! Available Water in crop rootzone at beginning of day, inches 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.5	Enter Crop Water Use (in inches) for each day. Daily Crop Water Use, inches 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.0	Enter the amount of water (in inches) to be applied. Amount of water to be applied, inches 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.0	Enter the net amount of Rainfall (if any) (in inches). Net Rainfall, inches 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Read irrig time in minutes Irrigation run time, hours per day 0.56 0.56 0.56 0.56 0.56 0.56 0.56 0.56	gation run hours or per day. Irrigation run time, minutes per day 34 34 34 34 34 34 34 34 34 34 34 34 34	
	Calculate net application rate above. Day 1 2 3 4 5 6 6 7 8 9 10 11 11 12 13 14	Enter available water (in inches) in Crop Root Zone for Day 1 only! Available Water in crop rootzone at beginning of day, inches 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.5	Enter Crop Water Use (in inches) for each day. Daily Crop Water Use, inches 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.0	Enter the amount of water (in inches) to be applied. Amount of water to be applied, inches 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.0	Enter the net amount of Rainfall (if any) (in inches). Net Rainfall, inches 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Read irrig time in minutes Irrigation run time, hours per day 0.56 0.56 0.56 0.56 0.56 0.56 0.56 0.56	gation run hours or per day. Irrigation run time, minutes per day 34 34 34 34 34 34 34 34 34 34 34 34 34	
	Calculate net application rate above. Day 1 2 3 4 5 6 7 8 9 10 11 11 12 13 14	Enter available water (in inches) in Crop Root Zone for Day 1 only! Available Water in crop rootzone at beginning of day, inches 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.5	Enter Crop Water Use (in inches) for each day. Daily Crop Water Use, inches 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.0	Enter the amount of water (in inches) to be applied. Amount of water to be applied, inches 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.0	Enter the net amount of Rainfall (if any) (in inches). Net Rainfall, inches 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Read irrig time in minutes Irrigation run time, hours per day 0.56 0.56 0.56 0.56 0.56 0.56 0.56 0.56	gation run hours or per day. Irrigation run time, minutes per day 34 34 34 34 34 34 34 34 34 34 34 34 34	

Analysis of Example: The first week, crop water use was .05" per day, thus an irrigation was scheduled every day for 34 minutes to replace what was depleted each day. The second week, irrigation duration was increased to 47 minutes per day since crop water use increased. Management may opt to run every other day for twice as long, or every third day for three times as long, but in no case should the interval be so long that all available water is consumed.

63

rmanent Crop Example - Metric Units									
Checkbook Style Irrigation Run Time Calculator for EMITTERS/MICROS - Metric Units									
Complete steps 1–6 below to determine irrigation system run time per day.									
Step 1:	To determine system Net Application Rate, enter four bolded values to the right. As an example, dripline laterals with 2 Lph emitters spaced every 1.2 meters are		Emitter/Micro flow, Lph	Emitter Spacing, meters	Lateral Spacing meters	Application Uniformity, decimal	Net application rate, mm per hour		
	uniformity is 9 application rat	0%. The resulting net e is .50 mm/hr.	2	1.2	3	0.9	0.500		
Step 2:	Enter Available below, the soil there is a total	e Water in crop rootzone for is a loam with 83 mm of ava of 125 mm of available wate	Day 1 only . This ilable water per r r to manage. It is	is dependent o neter when at fi assumed the ro	n soil texture and r eld capacity. The r otzone is at field c	ootzone depth. oot zone is 1.5 n apacity on Day 1	In the example neters deep, so I.		
Step 3:	Enter crop w day the first	ater use for each day. As week, 5 mm per day the s	an example, 14 second week.	4 days have alı	eady been filled	l out below: 2.	.5 mm per		
Step 4:	Enter amount of water to be applied in blue column. The amount may be the same as daily crop water use, or a deficit may be allowed to build up if a Management Allowable Depletion, MAD, has been set. In the example below, the MAD has been set at 5 mm, so irrigations have been scheduled when Available Water approached 120 mm.								
	has been set a	at 5 mm, so irrigations have	been schedule	d when Availab	le water approac	hed 120 mm.			
Step 5:	Enter how m	uch rain fall has occurred	, if any.	d when Availab	le water approac	hed 120 mm.			
Step 5: Step 6:	Enter how m Read irrigatio	uch rain fall has occurred	, if any. utes per day. Ir	d when Availab	ne = Amount to	hed 120 mm. be applied/ap	plication rate.		
Step 5: Step 6: Summary:	Read irrigatio Step 1: Calculate net application rate above.	uch rain fall has occurred n run time in hours or min Step 2: Enter Available Water, in mm, in Crop Root Zone for Day 1 only!	, if any. utes per day. Ir Step 3: Enter Crop Water Use, in mm, for each day,	rigation Run Ti Step 4: Enter the amount of water, in mm, to be applied	me = Amount to Step 5: Enter how much rainfall has occurred, if any.	be applied/ap Ste Read ir run time or minute	plication rate. p 6: rigation in hours s per day.		
Step 5: Step 6: Summary:	Read irrigation Step 1: Calculate net application rate above.	uch rain fall has occurred n run time in hours or min Step 2: Enter Available Water, in mm, in Crop Root Zone for Day 1 only! Available Water in crop rootzone at beginning of day, mm	, if any. utes per day. Ir Step 3: Enter Crop Water Use, in mm, for each day, Daily Crop Water Use, mm	rigation Run Ti Step 4: Enter the amount of water, in mm, to be applied Amount of water to be applied, mm	me = Amount to Step 5: Enter how much rainfall has occurred, if any. Nett Rainfall, mm	be applied/app Ste Read ir run time or minute	plication rate. p 6: rigation in hours s per day. Irrigation run time, minutes per day		
Step 5: Step 6: Summary:	nas been set a Enter how m Read irrigatio Step 1: Calculate net application rate above. Day 1	at 5 mm, so irrigations have uch rain fall has occurred n run time in hours or min Step 2: Enter Available Water, in mm, in Crop Root Zone for Day 1 only! Available Water in crop rootzone at beginning of day, mm	, if any. utes per day. Ir Step 3: Enter Crop Water Use, in mm, for each day, Daily Crop Water Use, mm	rigation Run Ti Step 4: Enter the amount of water, in mm, to be applied Amount of water to be applied, mm	me = Amount to Step 5: Enter how much rainfall has occurred, if any. Nett Rainfall, mm	hed 120 mm. be applied/app Ste Read ir run time or minute Irrigation run time, hours per day 0.00	plication rate. p 6: rigation in hours s per day. Irrigation run time, minutes per day 0		
Step 5: Step 6: Summary:	nas been set a Enter how m Read irrigatio Step 1: Calculate net application rate above. Day 1 2	at 5 mm, so irrigations have uch rain fall has occurred n run time in hours or min Step 2: Enter Available Water, in mm, in Crop Root Zone for Day 1 only! Available Water in crop rootzone at beginning of day, mm 125 122.5	, if any. utes per day. Ir Step 3: Enter Crop Water Use, in mm, for each day, Daily Crop Water Use, mm 2.5 2.5	rigation Run Ti Step 4: Enter the amount of water, in mm, to be applied Amount of water to be applied, mm	me = Amount to Step 5: Enter how much rainfall has occurred, if any. Nett Rainfall, mm 0.0 0.0	be applied/app	plication rate. p 6: rigation in hours s per day . Irrigation run time, minutes per day 0 600		
Step 5: Step 6: Summary:	nas been set a Enter how m Read irrigatio Step 1: Calculate net application rate above. Day 1 2 3	at 5 mm, so irrigations have uch rain fall has occurred n run time in hours or min Step 2: Enter Available Water, in mm, in Crop Root Zone for Day 1 only! Available Water in crop rootzone at beginning of day, mm 125 122.5 125	, if any. utes per day. Ir Step 3: Enter Crop Water Use, in mm, for each day, Daily Crop Water Use, mm 2.5 2.5 2.5	rigation Run Ti Step 4: Enter the amount of water, in mm, to be applied Amount of water to be applied, mm	me = Amount to Step 5: Enter how much rainfall has occurred, if any. Nett Rainfall, mm 0.0 0.0 0.0 0.0	be applied/app	plication rate. p 6: rigation in hours s per day . Irrigation run time, minutes per day 0 600 0		
Step 5: Step 6: Summary:	nas been set a Enter how m Read irrigatio Step 1: Calculate net application rate above. Day 1 2 3 4 5	at 5 mm, so irrigations have uch rain fall has occurred n run time in hours or min Step 2: Enter Available Water, in mm, in Crop Root Zone for Day 1 only! Available Water in crop rootzone at beginning of day, mm 125 122.5 122.5 122.5	, if any. utes per day. Ir Step 3: Enter Crop Water Use, in mm, for each day, Daily Crop Water Use, mm 2.5 2.5 2.5 2.5 2.5	rigation Run Ti Step 4: Enter the amount of water, in mm, to be applied Amount of water to be applied, mm	me = Amount to Step 5: Enter how much rainfall has occurred, if any. Nett Rainfall, mm 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	be applied/ap Ste Read ir run time or minute Irrigation run time, hours per day 0.00 10.00 0.00 0.00 0.00	plication rate. p 6: rigation in hours s per day. Irrigation run time, minutes per day 0 600 0 0		
Step 5: Step 6: Summary:	nas been set a Enter how m Read irrigatio Step 1: Calculate net application rate above. Day 1 2 3 4 5 6	at 5 mm, so irrigations have uch rain fall has occurred n run time in hours or min Step 2: Enter Available Water, in mm, in Crop Root Zone for Day 1 only! Available Water in crop rootzone at beginning of day, mm 125 122.5 122.5 125 122.5 125	, if any. utes per day. Ir Step 3: Enter Crop Water Use, in mm, for each day, Daily Crop Water Use, mm 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5	rigation Run Ti Step 4: Enter the amount of water, in mm, to be applied Amount of water to be applied, mm 5 7.5	me = Amount to Step 5: Enter how much rainfall has occurred, if any. Nett Rainfall, mm 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	hed 120 mm. be applied/app Ste Read ir run time or minute Irrigation run time, hours per day 0.00 10.00 0.00 0.00 0.00 0.00	plication rate. p 6: rigation in hours s per day. Irrigation run time, minutes per day 0 600 0 0 0 0 0		
Step 5: Step 6: Summary:	nas been set a Enter how m Read irrigatio Step 1: Calculate net application rate above. Day 1 2 3 4 5 6 7	at 5 mm, so irrigations have uch rain fall has occurred n run time in hours or min Step 2: Enter Available Water, in mm, in Crop Root Zone for Day 1 only! Available Water in crop rootzone at beginning of day, mm 125 122.5 122.5 122.5 122.5 122.5	, if any. utes per day. Ir Step 3: Enter Crop Water Use, in mm, for each day, Daily Crop Water Use, mm 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5	rigation Run Ti Step 4: Enter the amount of water, in mm, to be applied Amount of water to be applied, mm 5 7.5	me = Amount to Step 5: Enter how much rainfall has occurred, if any. Nett Rainfall, mm 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	hed 120 mm. be applied/ap Ste Read ir run time or minute Irrigation run time, hours per day 0.00 10.00 0.00 15.00 0.00 0.00	plication rate. p 6: rigation in hours s per day. Irrigation run time, minutes per day 0 600 0 0 0 0 0 0 0 0 0 0 0 0		
Step 5: Step 6: Summary:	Calculate application rate above. Day 1 2 3 4 5 6 7 8	at 5 mm, so irrigations have uch rain fall has occurred n run time in hours or min Step 2: Enter Available Water, in mm, in Crop Root Zone for Day 1 only! Available Water in crop rootzone at beginning of day, mm 125 122.5 122.5 125 122.5 120 120	, if any. utes per day. Ir Step 3: Enter Crop Water Use, in mm, for each day, Daily Crop Water Use, mm 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 5	rigation Run Ti Step 4: Enter the amount of water, in mm, to be applied Amount of water to be applied, mm 5 7.5	me = Amount to Step 5: Enter how much rainfall has occurred, if any. Nett Rainfall, mm 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	hed 120 mm. be applied/ap Ste Read ir run time or minute Irrigation run time, hours per day 0.00 10.00 0.00 15.00 0.00 0.00 20.00	plication rate. p 6: rigation in hours s per day. Irrigation run time, minutes per day 0 600 0 0 0 0 0 0 0 0 0 1200		
Step 5: Step 6: Summary:	nas been set a Enter how m Read irrigatio Step 1: Calculate net application rate above. Day 1 2 3 4 5 6 7 8 9	at 5 mm, so irrigations have uch rain fall has occurred n run time in hours or min Step 2: Enter Available Water, in mm, in Crop Root Zone for Day 1 only! Available Water in crop rootzone at beginning of day, mm 125 122.5 122.5 122.5 122.5 120 125 122.5 120 125	, if any. utes per day. Ir Step 3: Enter Crop Water Use, in mm, for each day, Daily Crop Water Use, mm 2.5 2.5 2.5 2.5 2.5 2.5 2.5 5 5 5	rigation Run Ti Step 4: Enter the amount of water, in mm, to be applied Amount of water to be applied, mm 5 7.5	e water approact me = Amount to Step 5: Enter how much rainfall has occurred, if any. Nett Rainfall, mm 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	hed 120 mm. be applied/ap Ste Read ir run time or minute Irrigation run time, hours per day 0.00 10.00 0.00 15.00 0.00 0.00 20.00 0.00 20.00	plication rate. p 6: rigation in hours s per day. Irrigation run time, minutes per day 0 600 0 0 0 0 0 0 0 0 0 0 0 0		
Step 5: Step 6: Summary:	Calculate application rate above. Day 1 2 3 4 5 6 7 8 9 10	at 5 mm, so irrigations have uch rain fall has occurred n run time in hours or min Step 2: Enter Available Water, in mm, in Crop Root Zone for Day 1 only! Available Water in crop rootzone at beginning of day, mm 125 122.5 122.5 125 122.5 120 125 120 125 120	, if any. utes per day. Ir Step 3: Enter Crop Water Use, in mm, for each day, Daily Crop Water Use, mm 2.5 2.5 2.5 2.5 2.5 2.5 2.5 5 5 5 5 5	rigation Run Ti Step 4: Enter the amount of water, in mm, to be applied Amount of water to be applied, mm 5 7.5 7.5	e water approact me = Amount to Step 5: Enter how much rainfall has occurred, if any. Nett Rainfall, mm 0.0 0.0 0.0 0.0 0.0 0.0 0.0	hed 120 mm. be applied/ap Ste Read ir run time or minute Irrigation run time, hours per day 0.00 10.00 0.00 15.00 0.00 15.00 0.00 20.00 0.00 20.00	plication rate. p 6: rigation in hours s per day. Irrigation run time, minutes per day 0 600 0 0 0 0 0 0 0 0 1200 0 1200		
Step 5: Step 6: Summary:	Calculate application rate above. Day 1 2 3 4 5 6 7 8 9 10 11	at 5 mm, so irrigations have uch rain fall has occurred n run time in hours or min Step 2: Enter Available Water, in mm, in Crop Root Zone for Day 1 only! Available Water in crop rootzone at beginning of day, mm 125 122.5 122.5 125 122.5 120 125 120 125 120 125 120 125	, if any. utes per day. Ir Step 3: Enter Crop Water Use, in mm, for each day, Daily Crop Water Use, mm 2.5 2.5 2.5 2.5 2.5 2.5 2.5 5 5 5 5 5 5	d when Availab	e water approact me = Amount to Step 5: Enter how much rainfall has occurred, if any. Nett Rainfall, mm 0.0 0.0 0.0 0.0 0.0 0.0 0.0	hed 120 mm. be applied/ap Ste Read ir run time or minute Irrigation run time, hours per day 0.00 10.00 0.00 15.00 0.00 15.00 0.00 20.00 0.00 20.00 0.00 20.00 0.00	plication rate. p 6: rigation in hours s per day. Irrigation run time, minutes per day 0 600 0 0 0 0 0 0 0 1200 1200 12		
Step 5: Step 6: Summary:	Calculate application rate above. Day 1 2 3 4 5 6 7 8 9 10 11 12 13	at 5 mm, so irrigations have uch rain fall has occurred n run time in hours or min Step 2: Enter Available Water, in mm, in Crop Root Zone for Day 1 only! Available Water in crop rootzone at beginning of day, mm 125 122.5 122.5 125 122.5 120 125 120 125 120 125 120 125 120	, if any. utes per day. Ir Step 3: Enter Crop Water Use, in mm, for each day, Daily Crop Water Use, mm 2.5 2.5 2.5 2.5 2.5 2.5 2.5 5 5 5 5 5 5	d when Availab	e water approact me = Amount to Step 5: Enter how much rainfall has occurred, if any. Nett Rainfall, mm 0.0 0.0 0.0 0.0 0.0 0.0 0.0	hed 120 mm. be applied/ap Ste Read ir run time or minute Irrigation run time, hours per day 0.00 10.00 0.00 15.00 0.00 15.00 0.00 20.00 0.00 20.00 0.00 20.00 0.00 20.00	plication rate. p 6: rigation in hours s per day. Irrigation run time, minutes per day 0 600 0 0 0 0 0 0 0 0 0 0 0 0		
Step 5: Step 6: Summary:	Nas been set aEnter how mRead irrigatioStep 1:Calculateapplicationrate above.Day1234567891011121314	at 5 mm, so irrigations have uch rain fall has occurred n run time in hours or min Step 2: Enter Available Water, in mm, in Crop Root Zone for Day 1 only! Available Water in crop rootzone at beginning of day, mm 125 122.5	, if any. utes per day. Ir Step 3: Enter Crop Water Use, in mm, for each day, Daily Crop Water Use, mm 2.5 2.5 2.5 2.5 2.5 2.5 2.5 5 5 5 5 5 5 5 5 5 5 5 5 5	d when Availab	Nett Rainfall, mm 0.0	hed 120 mm. be applied/ap Ste Read ir run time or minute Irrigation run time, hours per day 0.00 10.00 0.00 15.00 0.00 15.00 0.00 20.00 0.00 20.00 0.00 20.00 0.00 20.00 0.00 20.00 0.00 20.00 0.00 20.00	plication rate. p 6: rigation in hours s per day. Irrigation run time, minutes per day 0 600 0 0 0 0 0 0 0 0 0 0 0 0		

Analysis of example: The first week, crop water use was 2.5 mm per day, and irrigations were scheduled on day 2 and day 5 to replace depleted water. On day 8, crop water use doubled to 5 mm per day for the rest of the week, so irrigations were scheduled to apply 10 mm every other day to replace depleted water.

Row Crop Example - Metric Units

Checkbook Style Irrigation Run Time Calculator for TAPE - Metric Units

Complet	e steps 1–6	below to determine	e irrigation	system run	time per da	у.			
Step 1:	To determine system Net Application Rate, enter the three bolded values to the right. As an example, tape with a Q-100 of 4.5 Lpm / 100 m is laid on 1.1		Tape Q-100 (Lpm/100 meters)) Lateral Spacing meters	Application Uniformity, decimal	Net application rate, mm per hour		
	meter centers The applicatio resulting net a	(1.1 meter lateral spacing). n uniformity is 90%. The pplication rate is 2.2 mm/hr		4.5		0.9	2.20		
Step 2:	Enter Available example below deep, so there	Enter Available Water in crop rootzone for Day 1 only . This is dependent on soil texture and rootzone depth. In the example below, the soil is sandy with .42 mm of available water per cm when at field capacity. The root zone is 30 cm deep, so there are 13 mm of available water to manage.							
Step 3:	Enter crop w day the first	ater use for each day. As week, 2 mm per day the s	an example, 1 econd week.	4 days have alr	eady been fillec	l out below: 1	.5 mm per		
Step 4:	Enter the amo a deficit may the MAD has	bunt of water to be applied be allowed to build up if a M been set at 1.3 mm, so depl	in the blue colu Management Al leted water is re	ımn. The amou Iowable Deplet placed on a dai	nt may be the sai ion, MAD, has be ly basis.	me as daily crop en set. In the ex	o water use, or ample below,		
Step 5:	Enter how m	uch rain fall has occurred	, if any.						
Step 6:	Read irrigatio	n run time in hours or min	utes per day. Ir	rigation Run Ti	me = Amount to	be applied/ap	plication rate.		
Summary:	Step 1: Calculate nettStep 2: Enter Available Water, in mm, in Day 1 only!Step 3: Enter Crop Water Use, mm, for each day,Step 4: Enter the amount of water, in mm, to if any.Step 5: Enter how much rainfall has occurred, if any.Step 6: Read irrigation run time in hours or minutes per day.						p 6: rigation		
	nett application rate above.	Water, in mm, in Crop Root Zone for Day 1 only!	Water Use, mm, for each day,	amount of water, in mm, to be applied	has occurred, if any.	run time or minute	e in hours es per day.		
	nett application rate above.	Water, in mm, in Crop Root Zone for Day 1 only! Available Water in crop rootzone at beginning of day, mm	Water Use, mm, for each day, Daily Crop Water Use, mm	amount of water, in mm, to be applied Amount of water to be applied, mm	Nett Rainfall, mm	run time or minute Irrigation run time, hours per day	Irrigation run time, minutes per day		
	nett application rate above. Day	Water, in mm, in Crop Root Zone for Day 1 only! Available Water in crop rootzone at beginning of day, mm 12.60	Water Use, mm, for each day, Daily Crop Water Use, mm 1.50	amount of water, in mm, to be applied Amount of water to be applied, mm	Nett Rainfall, mm	run time or minute	Irrigation run time, minutes per day 41		
	nett application rate above. Day	Water, in mm, in Crop Root Zone for Day 1 only! Available Water in crop rootzone at beginning of day, mm 12.60 12.60	Water Use, mm, for each day, Daily Crop Water Use, mm 1.50 1.50	amount of water, in mm, to be applied Amount of water to be applied, mm 1.50 1.50	Nett Rainfall, mm 0.0 0.0	run time or minute	Irrigation run time, minutes per day 41 41		
	nett application rate above. Day	Water, in mm, in Crop Root Zone for Day 1 only! Available Water in crop rootzone at beginning of day, mm 12.60 12.60 12.60	Daily Crop Water Use, mm 1.50 1.50	amount of water, in mm, to be applied Amount of water to be applied, mm 1.50 1.50 1.50	Nett Rainfall, mm 0.0 0.0 0.0	run time or minute	Irrigation run time, minutes per day 41 41 41		
	nett application rate above. Day 1 2 3 4 5	Water, in mm, in Crop Root Zone for Day 1 only! Available Water in crop rootzone at beginning of day, mm 12.60 12.60 12.60 12.60	Water Use, mm, for each day, Daily Crop Water Use, mm 1.50 1.50 1.50 1.50	amount of water, in mm, to be applied Amount of water to be applied, mm 1.50 1.50 1.50 1.50 1.50	Nett Rainfall, mm 0.0 0.0 0.0 0.0 0.0	run time or minute	Irrigation run time, minutes per day 41 41 41 41 41		
	nett application rate above. Day 1 2 3 4 5 6	Water, in mm, in Crop Root Zone for Day 1 only! Available Water in crop rootzone at beginning of day, mm 12.60 12.60 12.60 12.60 12.60	Water Use, mm, for each day, Daily Crop Water Use, mm 1.50 1.50 1.50 1.50 1.50	amount of water, in mm, to be applied Amount of water to be applied, mm 1.50 1.50 1.50 1.50 1.50	Nett Rainfall, mm 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	run time or minute Irrigation run time, hours per day 0.68 0.68 0.68 0.68 0.68 0.68	Irrigation run time, minutes per day 41 41 41 41 41 41 41		
	nett application rate above. Day 1 2 3 4 5 6 6 7	Water, in mm, in Crop Root Zone for Day 1 only! Available Water in crop rootzone at beginning of day, mm 12.60 12.60 12.60 12.60 12.60 12.60 12.60	Water Use, mm, for each day, Daily Crop Water Use, mm 1.50 1.50 1.50 1.50 1.50 1.50 1.50	amount of water, in mm, to be applied Amount of water to be applied, mm 1.50 1.50 1.50 1.50 1.50 1.50 1.50	Nett Rainfall, mm 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	run time or minute lrrigation run time, hours per day 0.68 0.68 0.68 0.68 0.68 0.68 0.68	Irrigation run time, minutes per day 41 41 41 41 41 41 41 41 41 41 41		
	nett application rate above. Day 1 2 3 4 5 6 6 7 8	Water, in mm, in Crop Root Zone for Day 1 only! Available Water in crop rootzone at beginning of day, mm 12.60 12.60 12.60 12.60 12.60 12.60 12.60 12.60 12.60 12.60	Water Use, mm, for each day, Daily Crop Water Use, mm 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50	amount of water, in mm, to be applied Amount of water to be applied, mm 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50	Much rainfail has occurred, if any. Nett Rainfall, mm 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	run time or minute lrrigation run time, hours per day 0.68 0.68 0.68 0.68 0.68 0.68 0.68 0.68	Irrigation run time, minutes per day 41 41 41 41 41 41 41 41 41 41 41 55		
	nett application rate above. Day 1 2 3 4 5 6 6 7 8 9 9	Water, in mm, in Crop Root Zone for Day 1 only! Available Water in crop rootzone at beginning of day, mm 12.60 12.60 12.60 12.60 12.60 12.60 12.60 12.60 12.60 12.60	Water Use, mm, for each day, Daily Crop Water Use, mm 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50	amount of water, in mm, to be applied Amount of water to be applied, mm 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50	Much rainfail has occurred, if any. Nett Rainfall, mm 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	run time or minute lrrigation run time, hours per day 0.68 0.68 0.68 0.68 0.68 0.68 0.68 0.68	Irrigation run time, minutes per day 41 41 41 41 41 41 41 41 41 55 55 55		
	nett application rate above. Day 1 2 3 4 5 6 6 7 8 9 10	Water, in mm, in Crop Root Zone for Day 1 only! Available Water in crop rootzone at beginning of day, mm 12.60 12.60 12.60 12.60 12.60 12.60 12.60 12.60 12.60 12.60 12.60 12.60	Water Use, mm, for each day, Daily Crop Water Use, mm 1.50 1.50 1.50 1.50 1.50 1.50 1.50 2.00 2.00 2.00	amount of water, in mm, to be applied Amount of water to be applied, mm 1.50 1.50 1.50 1.50 1.50 1.50 1.50 2.00 2.00 2.00 2.00	Much rainfail has occurred, if any. Nett Rainfall, mm 0.0	run time or minute lrrigation run time, hours per day 0.68 0.68 0.68 0.68 0.68 0.68 0.68 0.68	Irrigation run time, minutes per day 41 41 41 41 41 41 41 41 41 55 55 55 55 55		
	nett application rate above. Day 1 2 3 4 5 6 6 7 8 9 10 11	Water, in mm, in Crop Root Zone for Day 1 only! Available Water in crop rootzone at beginning of day, mm 12.60 12.60 12.60 12.60 12.60 12.60 12.60 12.60 12.60 12.60 12.60 12.60 12.60 12.60 12.60 12.60	Water Use, mm, for each day, Daily Crop Water Use, mm 1.50 1.50 1.50 1.50 1.50 1.50 1.50 2.00 2.00 2.00 2.00	amount of water, in mm, to be applied Amount of water to be applied, mm 1.50 1.50 1.50 1.50 1.50 1.50 1.50 2.00 2.00 2.00 2.00	Much rainfail has occurred, if any. Nett Rainfall, mm 0.0	run time or minute or minute per day 0.68 0.68 0.68 0.68 0.68 0.68 0.68 0.68	Irrigation run time, minutes per day 41 41 41 41 41 41 41 41 41 55 55 55 55 55 55		
	nett application rate above. Day 1 2 3 4 5 6 6 7 8 9 10 11 12 13	Water, in mm, in Crop Root Zone for Day 1 only! Available Water in crop rootzone at beginning of day, mm 12.60 12.60 12.60 12.60 12.60 12.60 12.60 12.60 12.60 12.60 12.60 12.60 12.60 12.60 12.60 12.60	Water Use, mm, for each day, Daily Crop Water Use, mm 1.50 1.50 1.50 1.50 1.50 1.50 2.00 2.00 2.00 2.00 2.00 2.00	amount of water, in mm, to be applied Amount of water to be applied, mm 1.50 1.50 1.50 1.50 1.50 1.50 1.50 2.00 2.00 2.00 2.00 2.00 2.00	Much rainfail has occurred, if any. Nett Rainfall, mm 0.0	run time or minute or minute per day 0.68 0.68 0.68 0.68 0.68 0.68 0.68 0.68	In hours Irrigation run time, minutes per day 41 41 41 41 55 55 55 55 55 55		
	nett application rate above. Day 1 2 3 4 5 6 6 7 8 9 10 11 12 13 14	Water, in mm, in Crop Root Zone for Day 1 only! Available Water in crop rootzone at beginning of day, mm 12.60 12.60 12.60 12.60 12.60 12.60 12.60 12.60 12.60 12.60 12.60 12.60 12.60 12.60 12.60 12.60 12.60	Water Use, mm, for each day, Daily Crop Water Use, mm 1.50 1.50 1.50 1.50 1.50 1.50 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2	amount of water, in mm, to be applied Amount of water to be applied, mm 1.50 1.50 1.50 1.50 1.50 1.50 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2	Much rainfail has occurred, if any. Nett Rainfall, mm 0.0	run time or minute or minute per day 0.68 0.68 0.68 0.68 0.68 0.68 0.68 0.68	in hours ss per day. Irrigation run time, minutes per day 41 41 41 41 41 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55		
	nett application rate above. Day 1 2 3 4 5 6 6 7 8 9 10 11 12 13 14 15	Water, in mm, in Crop Root Zone for Day 1 only! Available Water in crop rootzone at beginning of day, mm 12.60 12.60 12.60 12.60 12.60 12.60 12.60 12.60 12.60 12.60 12.60 12.60 12.60 12.60 12.60 12.60 12.60 12.60 12.60	Water Use, mm, for each day, Daily Crop Water Use, mm 1.50 1.50 1.50 1.50 1.50 1.50 2.00 2.00 2.00 2.00 2.00 2.00 2.00	amount of water, in mm, to be applied Amount of water to be applied, mm 1.50 1.50 1.50 1.50 1.50 1.50 1.50 2.00 2.00 2.00 2.00 2.00 2.00 2.00	Much rainfail has occurred, if any. Nett Rainfall, mm 0.0	run time or minute or minute per day 0.68 0.68 0.68 0.68 0.68 0.68 0.68 0.68	In hours Irrigation run time, minutes per day 41 41 41 41 41 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55		

Analysis: The first week, crop water use was 1.5 mm per day, thus an irrigation was scheduled every day for 41 minutes to replace what was depleted each day. The second week, irrigation duration was increased to 55 minutes per day since crop water use increased. Management may opt to run every other day for twice as long, or every third day for three times as long, but in no case should the interval be so long that all available water is consumed.

© 2018 The Toro Company

FERTIGATION AND CHEMIGATION

- 4.1 Plant/Soil/Water Relationships
 - A. Water Analysis and Interpretation
 - B. Soil Analysis and Interpretation
 - C. Plant Analysis and Interpretation
- 4.2 General Chemical Injection Guidelines
- 4.3 Chemical Injection Equipment
- 4.4 Chemical Injection Formulas

Fertigation And Chemigation

4.1 Plant/Soil/Water Relationships

There are many reasons for applying chemicals using the drip irrigation system. Here are a few examples:

- System maintenance chemicals may be applied to treat or prevent clogging from both organic and inorganic sources.
- Soil and water amendments may be applied to correct physical or chemical imbalances that impede water infiltration into the soil or threaten plant health.
- Nutrients may be easily and precisely spoon-fed directly to the soil and plant roots without wetting the foliage.
- Other agronomic chemicals may be applied to kill pests or enhance growth.

Seventeen Nutrients Required by Plants					
Major nutrients from	С	Carbon			
water and CO ₂	н	Hydrogen			
	0	Oxygen			
Primary Macronutrients	N	Nitrogen			
	Ρ	Phosphorus			
	К	Potassium			
Secondary Macronutrients	Ca	Calcium			
	Mg	Magnesium			
	S	Sulfur			
Micronutrients	Fe	Iron			
	Cu	Copper			
	Mn	Manganese			
	Мо	Molybdenum			
	В	Boron			
	Cl	Chlorine			
	Ni	Nickel			
	Zn	Zinc			
,					

In short, the chemigation system must be designed to safely apply the right chemicals in the right quantities at the right time.

The illustration above (Improving Plant Life, 2009) shows how plant leaves and roots work together to obtain the 17 nutrients required by plants as shown in the adjacent chart (Adapter from Plaster, 2003). A drip irrigation system can be very effective in applying many of these nutrients directly.

68

Testing for Nutrients

Drip irrigation applies water and nutrients to the soil for plant uptake by the roots. Both scientific facts and local knowledge of the plant/soil/water environment are necessary to determine nutrient status.

- Before your irrigation system is designed, **soil and water analyses** are necessary to ensure that the system application rate matches the soil's ability to accept water and to discover and correct any chemical imbalances or toxicities that threaten infiltration or plant health.
- As water, fertilizer and other chemicals are applied during the growing season, it's important to monitor and correct **physical or chemical imbalances** that may develop as well.
- Advances in field monitoring equipment allow frequent **soil and plant analyses** to monitor crop growth and nutrient status.

By managing all three parameters (soil, water and plants) correctly, you can maximize profitability and minimize the risk of applying water and chemicals incorrectly. The following chart (Burt, 1995) summarizes the timing, determinations, observations and procedures of various plant/soil/water tests. Additional details about water, soil and plant tests follow.

Category of Nutrient Test							
	Soil	Soil Solution	Plant Tissue	Plant Sap	Irrigation Water		
Typical Timing	Preplant, and if deficiency symptoms arise.	Weekly	Several times during growing season.	Several times during growing season.	Once or twice during growing season.		
What is determined	Total fertilizer need for the season.	Availability of nutrients at that moment.	Are levels of specific nutrients sufficient for that growth stage?	Are levels of specific nutrients sufficient for that growth stage?	Nutrient contribution by water; potential toxic elements such as boron and chloride.		
Special Observations	Potential for problems in fertility or infiltration. Examine nutrient ratios in the soil.	Release rates of various fertilizers.	Nutrient ratios in the plant itself (DRIS).	Nutrient ratios in the plant itself (DRIS).	Permeability hazards.		
Typical Procedure	Laboratory	Field	Laboratory	Field	Laboratory or Field		

A. Water Analysis and Interpretation (Boswell, 2000)

The preliminary study for a micro irrigation system requires a careful analysis of the source water. A micro irrigation system requires good quality water free of all but the finest suspended solids. **Neglecting to analyze the quality of source water and provide adequate treatment is one of the most common reasons for the failure of micro irrigation systems to function properly**.

Taking a Water Sample

A representative water sample must be taken. If the source is a well, the sample should be collected after the pump has run for about half an hour. For a tap on a domestic supply line, the supply should be run for several minutes before taking the sample. When collecting samples from a surface water source such as a ditch, river or reservoir, the samples should be taken away from the shore, near the center and below the water surface. Where surface water sources are subject to seasonal variations in quality, these sources should be sampled and analyzed when the water quality is at its worst.

Test water early for clogging, toxicity, salinity and infiltration hazards. Half-gallon (two liter) glass or plastic containers are ideal for sample collection. They should be thoroughly cleaned and rinsed with the sample water to avoid contamination of the water sample. Two samples should be collected. The first sample should be used for all tests except iron, and no additives are required. The second sample is used for the iron analysis, and after collecting the water, ten drops of HCl should be added. HCl is commonly available in the form of muriatic acid.

Sample bottles should be filled completely to the top (with all air removed), carefully labeled, tightly sealed, and kept in a cool place (do not freeze!). Samples should be sent immediately to a water-testing laboratory.

Typical Constituents of a Water Analysis

Suspended Solids – Suspended solids in the water supply include soil particles ranging in size from coarse sands to fine clays, living organisms including algae and bacteria, and a wide variety of miscellaneous waterborne matter. Suspended solids loads can vary considerably from day to day and season to season, particularly when the water source is a river, lake or reservoir. Since suspended solids above a certain size must be filtered out of the water before it enters the system, it's a good idea to obtain a reliable estimate of the total quantity of material to be removed.

pH – The pH of source waters used for irrigation is normally within a range of 6.5 to 8.0, and seldom presents a problem in and of itself. However, since pH plays a major role in a variety of chemical reactions in the water and in the soil, it must be considered. The pH of the source water may determine whether or not various dissolved solids present in the water, such as iron or calcium carbonate, will precipitate out to cause emitter clogging. The water pH may help or hinder the action of chlorine used for control of biological growth, may affect soil pH, and may cause fertilizers to precipitate out of solution and cause clogging problems. Total Dissolved Solids (TDS) – TDS is usually reported as ppm and describes the total salt content of the water. TDS can be determined by evaporating all the water from a water sample of known weight and then weighing the salt remaining. More often it's estimated by measuring the Ecw in ds/m and multiplying by 640. This estimates TDS in ppm. To calculate total pounds of TDS applied per acre-foot of irrigation water, multiply ppm TDS by 2.72. Thus, water with 736 ppm of TDS is applying 2,000 pounds of salt per acre foot! To calculate kilograms of TDS applied per meter of irrigation water over a hectare, multiply ppm TDS by 9.989. In this example, water with 736 ppm TDS is adding 7,352 kg of salt per hectare with every meter of water applied.

Bicarbonate – Bicarbonate (HCO₃) is common in natural waters. Sodium and potassium bicarbonates can exist as solid salts, such as baking soda (sodium bicarbonate). Calcium and magnesium bicarbonates exist only in solution. As the moisture in the soil is reduced by transpiration or by evaporation, calcium bicarbonate decomposes, carbon dioxide (CO₂) escapes into the air, and water (H₂O) is formed, leaving insoluble lime (CaCO₃) behind.

 $Ca(HCO_3)_2$ upon drying = $CaCO_3 + CO_2 + H_2O$ continued on next page A similar reaction takes place with magnesium bicarbonate. Large amounts of bicarbonate ions in irrigation water will, as the soil approaches dryness, precipitate calcium, which effectively removes it from the clay. This leaves sodium in its place. In this way a calcium dominant soil can become a sodium dominant (sodic) soil by the use of a highbicarbonate irrigation water.

Carbonate – Carbonate (CO_3) is found in some waters. Since calcium and magnesium carbonates are relatively insoluble, high carbonate waters mean that the cations associated with them are likely to be sodium with possibly a small amount of potassium. Upon drying in the soil, the carbonate ion will remove calcium and magnesium from the clay in a process similar to that of bicarbonate, and an alkali (sodic) soil will develop.

Manganese – Manganese (Mn) occurs in groundwater less commonly than iron and generally in smaller amounts. Like iron, manganese in solution may precipitate out as a result of chemical or biological activity, forming a sediment that will clog emitters and other system components. The color of the deposits ranges from dark brown, if there is a mixture of iron, to black if the manganese oxide is pure. Caution should be exercised when chlorination is practiced with waters containing manganese because there's a time delay between chlorination and the development of a precipitate.

Iron – Iron (Fe) may be present in a soluble (ferrous) form, and may create emitter clogging problems at concentrations as low as 0.1 ppm. Dissolved iron may precipitate out of the water due to changes in temperature or pressure, in response to a rise in pH, or through the action of bacteria. The result is an ocher sludge or slime mass capable of incapacitating the entire irrigation system.

Sulfides – If the irrigation water contains more than 0.1 ppm of total sulfides, sulfur bacteria may grow within the irrigation system, forming masses of slime that may clog filters and emitters.

Bacterial Populations – Populations of less than 10,000/ml are considered of little hazard, while over 10,000/ml likely require treatment.

Oil – Oil will rapidly block both sand media and screen filters and may clog emitters or orifices. Oil may also result in chemical degradation of plastic pipes, tubing, or other components.

Sodium – Sodium (Na) salts are all very soluble and found in most natural waters. A soil with a large amount of sodium associated with the clay fraction has poor physical properties for plant growth. When wet it runs together, becomes sticky and is nearly impervious to water. When it dries, hard clods form, making it difficult to till. Continued use of waters with a high proportion of sodium may bring about severe changes in an otherwise good soil. Sodium is also evaluated using the Sodium Adsorption Ratio (SAR).

Chloride – Chloride (Cl) is found in all natural waters and is toxic to some plants in high concentrations. All common chlorides are soluble and contribute to the total salt content (salinity) of soils. The chloride content must be determined to properly evaluate irrigation waters.

Boron – Boron (B) occurs in water in one or another anion form. A small amount of boron is essential for plant growth, but a concentration slightly above the optimum is toxic to plants. Some plants are more sensitive to boron excess than others.

Salinity (EC and TDS) – Plant roots take up water from the soil primarily as a result of osmotic pressure, which exists because plant cells contain a higher concentration of dissolved salts than is present in the soil water. This difference in salt concentration forces water to move from the area of lower to higher salt concentration, through the semi permeable cell walls of the plant, in a process called osmosis.

When saline water is applied to soils it raises the salt content of the soil water, lowering the osmotic pressure across the permeable root membrane and reducing water absorption by the plant roots. During the period between irrigations, as pure water is removed from the soil, the salt concentration in the soil water increases to further lower osmotic pressure.

continued on next page
Salinity may be expressed as electrical conductivity (EC) in mmho/cm or as total dissolved solids (TDS) in ppm, with 1.0 mmho/cm approximately equaling 640 ppm. Under traditional irrigation methods, irrigation water having an EC value of 0.75 or more (TDS = 480) may present a potential salinity problem for salt sensitive crops (e.g. strawberries), while certain salt tolerant crops (e.g. cotton) may flourish using water many times as saline.

A properly designed and operated micro irrigation system can significantly reduce salinity problems because the system maintains a high soil moisture content, and also because water moving outward from emitting sources will move salts to the outer edges of the root zone in a process called micro leaching.

However, this is not to suggest that salinity can be ignored in the design and operation of micro irrigation systems. On the contrary, because of the absence of deep percolation under micro irrigation, there will be virtually no vertical leaching of salts unless the engineer incorporates this capability into the design of the system.

Sodium Adsorption Ratio (SAR) – The SAR, which compares the concentration of sodium ions with the concentration of calcium and magnesium ions, is helpful in assessing the degree to which detrimental sodium will replace beneficial calcium on soil clay particles. In recent years, another calculation called "adjusted SAR" (adj. R_{Na}) has been developed to include the role bicarbonates play in stripping the soil of beneficial calcium. It's now believed that an inter-relationship exists between adj. R_{Na} and EC_w to properly estimate permeability hazard. **Calcium** – Calcium (Ca) is found to some extent in all natural waters. A soil predominantly saturated with beneficial calcium is friable and easily worked, usually permits water to penetrate easily, and does not puddle or run together when wet. For this reason calcium, in the form of gypsum, is often applied to tight soils to improve their physical properties. Generally, irrigation water high in dissolved calcium is desirable.

Magnesium – Magnesium (Mg) is usually found in measurable amounts and behaves much like calcium in the soil. Often laboratories will not separate calcium and magnesium, but will report them simply as Ca + Mg in me/L.

Potassium – Potassium (K) is usually found in only small amounts in natural waters. It behaves much like sodium in the soil. In water analysis, it's generally included with the sodium rather than reported separately.

Sulfate – Sulfate (SO_4) is abundant in nature. Sodium, magnesium and potassium sulfates are readily soluble. Calcium sulfate (gypsum) has a limited solubility. Sulfate has no characteristic action on the soil except to contribute to the total salt content. The presence of soluble calcium will limit sulfate solubility.

Nitrate – Nitrate (NO_3) is not commonly found in large amounts in natural waters. While beneficial as a plant nutrient, nitrate may have undesirable effects on crop maturation or ripening. High nitrate levels in water may indicate contamination from excessive use of fertilizers or from sewage. Nitrates have no effect on the physical properties of soil except to contribute slightly to its salinity. Use the following chart as a summary and guideline for water analysis parameters and possible interpretations:

Water Analysis and Interpretation							
Constituent	Why It's of Interest		Course				
Constituent	why it s of interest	Low	Medium	High	Source		
Suspended Solids	Physical Clogging	<50 ppm	50-100 ppm	>100 ppm	1		
рН	Chemical Clogging	<7.0	7.0-8.0	>8.0	1		
Salt	Chemical Clogging	<500 ppm	500–2,000 ppm	>2,000 ppm	1		
Bicarbonate	Chemical Clogging	—	100 ppm	—	1		
Manganese	Chemical Clogging	<0.1 ppm	0.1–1.5 ppm	>1.5 ppm	1		
Total Iron	Chemical Clogging	<0.2 ppm	0.2–1.5 ppm	>1.5 ppm	1		
Hydrogen Sulfide	Chemical Clogging	<0.2 ppm	0.2–2.0 ppm	>2.0 ppm	1		
Bacterial Populations/gal	Biological Clogging	<38 million/gal	38–190 million/gal	>190 million/gal	1		
Bacterial Populations/ml	Biological Clogging	<10,000/ml	10,000–50,000/ml	>50,000/ml	1		
Oil	Physical Clogging		Unknown		1		
Sodium, adj. R _{Na} value:	Toxicity to Plant Growth	<3.0	3.0 - 9.0	>9.0	2		
Chloride, me/l	Toxicity to Plant Growth	< 4.0	4.0 - 10	>10.0	2		
Chloride, mg/l or ppm	Toxicity to Plant Growth	< 142	142 - 355	>355	2		
Boron, mg/l or ppm	Toxicity to Plant Growth	< 0.5	0.5 - 2.0	2.0–10.0	2		
EC _{w7} , dS/m	Salinity (inhibits roots	<0.75	0.75 - 3.0	>3.0	2		
EC _{w7} , TDS	from absorbing water)	480	1,920	1,920	2		
Sodium, adj. R _{Na} value of:	Infiltration Problems (water fails to penetrate into soil)						
0–3	together with $EC_w =$	>0.7	0.7 - 0.2	<0.2	3		
3–6	together with $EC_w =$	>1.2	1.2 -0.3	<0.3	3		
6–12	together with $EC_w =$	>1.9	1.9 - 0.5	<0.5	3		
12–20	together with EC_w =	>2.9	2.9 - 1.3	<1.3	3		
20-40	together with $EC_w =$	>5.0	5.0 - 2.9	<2.9	3		

Sources:

1. Bucks and Nakayama, 1980

2. Ayers, 1977

3. Westcott & Ayers, 1984

B. Soil Analysis and Interpretation

Drip irrigation technology lets farmers spoon-feed nutrients and soil amendments much more frequently than with conventional practices. In addition to traditional pre-plant laboratory analyses that indicate total fertilizer requirements for the crop, field "quick tests" report current nutrient status of the soil solution (water held in the soil). With this data, fertilizer and soil amendment applications may be adjusted frequently to optimize crop production and profitability.

It should be noted that soil tests and soil solution tests are different as are their interpretations. The following guidelines will help ensure success:

- Use a reputable lab and/or reputable field quick-tests.
- Be careful to interpret results using the correct units. Various laboratories express results in different units and forms that influence the interpretation.
- Consult with laboratory personnel regarding exact sampling procedures for soil tests and/or manufacturer recommendations for field soil solution testing. The results will only be as good as the sampling technique.

Soil tests should be interpreted differently than soil solution tests.

- Keep in mind that the results of soil solution tests are typically interpreted differently than soil tests and are highly dependent upon the crop, soil type and percentage of the soil wetted by the irrigation method. For this reason, soil solution tests are typically used to detect sufficiency levels of nutrients, and are often used in conjunction with plant tissue analyses. Some consider soil solution testing more suited for monitoring nutritional trends rather than determining absolute sufficiency levels.
- Many believe that the nutrient balance within a soil must be considered in addition to total nutrient quantity in soil (Burt, 1995).

The following provides general rules for interpreting soil test results (Burt, 1995 after Tisdale et al., 1985):

General Rules for Interpreting Soil Test Results					
Soil Nutrient	Rule				
NO3-N (Nitrate-Nitrogen)	Deficient if NO3-N < 10 ppm. Generally sufficient if NO3-N > 20 ppm.				
Ca (Calcium)	Ca (mEq) should occupy 65 –75% of CEC.* If Ca/Mg < 2/1, then Ca deficiency may occur.				
Mg (Magnesium)	Mg (mEq) should occupy 10–15% of CEC.* If Ca/Mg > 20/1, then Mg deficiency may occur.				
K (Potassium)	K (mEq) should occupy 2.5 –7.0% of CEC.* *CationExchangeCapacity				

74

The following provides general interpretations of nutrients in the soil solution (Burt, 1995 after Hartz et al., 1994; Tisdale et al., 1985).

General Interpretations of Nutrients in the Soil Solution						
Sufficiency Level	Notes					
> 50–75 ppm	Generally considered sufficient during early half of the season.					
20 – 60 ppm is generally adequate	Suggested solution balance: K (ppm) = 0.10 x Ca (ppm)					
Unclear	Suggested solution balance: Ca (ppm) = 10 x K (ppm)					
24 ppm						
	ations of NutrienSufficiency Level> 50-75 ppm20 - 60 ppm is generally adequateUnclear24 ppm					

In addition to nutrients, soil pH must be monitored because nutrient availability, solubility of toxic ions and microbial activity are all influenced by pH. The pH of acidic soils may be raised with the addition of free lime. This chart illustrates how toxic elements such as aluminum become more soluble, and available, at lower pH, and how neutral pH favors beneficial nutrient availability and microbial activity. The thicker the width of the bar, the more available the nutrient is. (Truog, 1943).

Effect of Soil pH on Nutrient Availability							
pH 4	0 5.	0 6	0 7	.0 8	.0 9.	0 10 <u>.</u> 0	
Nitrogen							
Phosphorus							
Potassium							
Calcium and Magnesium							
Sulfur							
Boron							
Copper and Zinc							
Molybdenum							
Iron and Manganese							
Aluminum							

It should be noted that maintenance chemicals and common fertilizers often lower the pH of the water, and in turn can also lower the pH of the soil.

In addition to pH, the soil's salt and sodium levels must be monitored to prevent injury to plants and the collapse of soils. The following are characteristics of salted soils (Plaster, 2003):

Characteristics of Salted Soils							
Salted Soil Class	Conductivity (mmhos/cm)	Exchangeable Sodium (%)	Sodium Absorption Ratio	Soil pH	Soil Structure		
Saline	>4.0	<15	<13	<8.5	Normal		
Sodic	<4.0	>15	>13	>8.5	Poor		
Saline-sodic	>4.0	>15	>13	<8.5	Normal		

The amount of free lime (calcium carbonate) present will dictate treatment materials and methods. The following provides a guideline to treatment of saline, sodic (alkaline) and saline/sodic conditions (adapted from Plaster, 2003, pgs 191-192). As always, preventive maintenance and monitoring are best to avoid toxicity and/or water infiltration problems. More information on managing salinity may be found in Chapter 5.

Treatment Guidelines for Saline, Sodic, and Saline/Sodic Soils								
	ECe (dS/m)	ESP (%)	рН	Physical Properties	Amendments			
Saline	>4.0	<15	<8.5	Good	Leaching with high quality water; good drainage necessary.			
Sodic (Alkali)	<4.0	>15	>8.5	Poor – also called black alkali.	Gypsum and/or acid; organic matter to improve leaching.			
Saline/Solic	>4.0	>15	<8.5	Fair to poor – water penetration inhibited.	Leaching in the presence of gypsum; acid in the presence of limestone; good drainage necessary.			

C. Plant Analysis and Interpretation

Plant tissue analyses reveal what the plant actually needs, whereas soil analyses reveal what's actually available, or deficient, in the soil. Although tissue analysis is common in irrigated agriculture, the ability to spoon-feed a crop with a drip irrigation system has prompted a trend towards more frequent tissue testing so that mid-season fertigation adjustments may be made for the current crop. Fresh plant tissue and sap testing can be done by labs or in the field by farmers themselves. This allows for frequent, inexpensive testing.

There are many techniques and interpretations for tissue testing. Regardless of the technique, it's important to consider the stage of growth, the part of the plant and the correct sampling time when collecting tissue samples. For proper interpretation, the tissue sampled must be the same as the tissue used as the standard for comparison in making the nutrient recommendation. Types of approaches include the critical level approach, the sufficiency range approach, the nutrient ratio/product approach, and the diagnosis and recommendation integrated system (DRIS) approach. Fresh plant sap testing has also gained popularity, due to the speed and simplicity of this test compared to traditional tissue testing. Plant tissue interpretation techniques can potentially be applied to plant sap measurements as well.

Summary of Plant/Soil/Water Relationships

Old practices may no longer apply with drip irrigation. Drip irrigation systems have empowered growers to fine-tune and spoonfeed their crops as never before. For this reason, new types of soil/water/ plant tests are being performed more frequently, and in many cases, **old guidelines are being rewritten to take into account drip's higher yield potential**. In order to maximize drip system benefits, it's important to seek out current information for local crops and conditions, and to be open to changing previous practices that may no longer apply to the drip irrigation growing environment.

4.2 General Chemical Injection Guidelines

Acid, chlorine, pesticides and other chemicals may be applied to keep the irrigation system clean and to protect system components from damage. In addition, chemicals are routinely applied for agronomic purposes. It's important to chemigate properly in order to avoid clogging the irrigation system, jeopardizing components, polluting the water source and/or the surrounding environment, or jeopardizing the safety of humans who have access to the irrigation systems. Chemigation can be complicated and dangerous and should be performed with extreme caution and care. This discussion is not meant to be comprehensive and is only meant to provide some general guidelines. Further information regarding chemical injection rates, formulas, safety and compliance information are readily available from local dealer, manufacturer, university or consultant sources. It is highly encouraged that these or other sources be consulted regarding this important topic. The label should always be read and followed carefully.

Guidelines for Applying Chemicals

Here are general guidelines to keep in mind when applying chemicals (Boswell, 2000):

- 1. The chemicals must be **reasonably soluble**.
- If two or more chemicals are mixed to prepare a stock solution for injection into the irrigation system, a "jar test" should be performed (see below) to ensure the chemicals do not react with each other to form a precipitate.
- 3. The chemicals must be **compatible with the irrigation water.** Factors such as salinity and pH may affect solubility of injected chemicals. Chlorine and various dissolved solids may react with injected chemicals after injection into the irrigation water.
- 4. When dissolved in water, the chemicals must not form scum or sediments that will enter the irrigation system to create problems. Chemicals should be **reasonably free of impurities that could cause clogging**.

- 5. The chemicals used **must not attack**, **corrode**, **or otherwise impair materials or components** used in the micro irrigation system. Some chemicals can be particularly damaging; for example, chlorine can damage brass components used in gauges, meters, or pump impellers, and some pesticides will attack PVC and other plastics.
- 6. The chemical injection point should be located **upstream** of the system filter so that any impurities or precipitates resulting from chemical injection are removed.
- 7. CAUTION: ALWAYS ADD ACID TO WATER. NEVER ADD WATER TO ACID.
- 8. CAUTION: NEVER MIX OR STORE ACID AND CHLORINE TOGETHER.

Conduct a Compatibility Test ("Jar Test")

A simple compatibility test, sometimes called "the jar test", should always be carried out before any chemical, including fertilizer, is injected into the system. Take a clean jar and fill it with water from the

Always conduct a jar test before applying chemicals. irrigation system water supply. Add a small amount of the chemical to be injected so that the concentration is slightly higher than anticipated for injection, then shake well. Allow the jar to sit undisturbed for 24 hours and then examine it for cloudiness, sediments on the bottom, or scum on the surface of the water. If any reaction occurs, injection of this chemical is not recommended.

These pictures show the results of a 24-hour test. An alternative fertilizer was chosen rather than this one.

If more than one chemical is injected at the same time, compatibility charts such as the one below (Van der Gulik, 1999, p. 241) may be consulted beforehand to help predict compatibility problems.

Fertilizer Compatibility Chart														
	Urea	Ammomium nitrate	Ammonium sulphate	Calcium nitrate	Potassium nitrate	Potassium chloride	Potassium sulphate	Ammonium phosphate	Fe, Zn, Cu, Mn sulphate	Fe, Zn, Cu, Mn chelate	Magnesium sulphate	Phosphoric acid	Sulphuric acid	Nitric acid
Urea														
Ammomium nitrate														
Ammonium sulphate														
Calcium nitrate														
Potassium nitrate														
Potassium chloride														
Potassium sulphate														
Ammonium phosphate	,													
Fe, Zn, Cu, Mn sulphate														
Fe, Zn, Cu, Mn chelate														
Magnesium sulphate	,													
Phosphoric acid														
Sulphuric acid														
Nitric acid														
Fully Compatible														
Reduced Solibility														
Incompatible														

Follow Best Practices

In addition, it's important to follow best management practices outlined by the chemical manufacturer to ensure the chemical provides the value intended, isn't wasted and/or doesn't cause unintended harm. Follow recommendations regarding when the chemical should be applied, for how long, and whether a clean water flush should occur after injection. **Some chemicals are best applied at the beginning of the irrigation event, others towards the end.** For example, highly mobile nitrogen fertilizers should be injected towards the end of the irrigation cycle rather than the beginning to prevent leaching.

Scheduling Considerations

Ideally, the chemical injected is evenly distributed throughout the field. The following graph, "Chemical Travel Time to End of Tape" (Burt, 2007), illustrates how long it takes a chemical to travel from the

Chemical travel time must be considered.

beginning to the end of various tape laterals, assuming the tape is already full of water (see Establish Baseline Readings for fill time calculation). For example, it can take anywhere from 40 minutes to over 4 hours for chemicals at the head of the tape line to reach the end depending on tape diameter, flow rate and length of run. This must be considered when scheduling chemigation events because the duration of operation must exceed the chemical travel time in order for all emitters to receive chemical.

To avoid chemical travel time issues, start the system in "flush mode" and then inject chemical at the desired concentration until chemical begins to exit the flush line. Then close the flush valves and resume normal operating conditions. This accelerates chemical travel time to the end of the field, and helps to balance the application to all parts of the field. If the chemical is chlorine for the purpose of shock treating algae and other contaminants, shut off the irrigation system after the flush valves are closed. In this way, concentrated chlorine will be delivered faster and more evenly throughout the field and can treat the algae in the pipeline (Burt, 2007, p. 233).

The following guidelines may be used as a rule of thumb (Schwankl, 2001):

- Trees and vines injections should last at least 1 hour, and at least 1 hour (longer is better) of clean water irrigation should follow it.
- **Row crop drip** injections should be at least 2 hours in length, and there should be at least 2 hours (longer is better) of clean water irrigation following injection.

4.3 Chemical Injection Equipment

Chemicals may be injected into pressurized drip systems via a variety of methods including positive displacement pumps, differential pressure tanks, and venturi-type suction devices. Venturi devices such as those shown here are popular because of their simplicity and low cost, and because they don't require a power source. They use differential pressure in the irrigation system to create a low pressure zone, or vacuum, in the injector throat. This vacuum efficiently draws chemicals into the pressurized water line, eliminating the need for a separate chemical injection pump. Venturi devices may be installed directly into the mainline, or they may be connected in series with a small centrifugal pump in a parallel circuit.

A venturi injector may also be connected in parallel with a valve or filter to take advantage of the pressure differential across these system components. Due to their simplicity, venturi injection systems are highly reliable, and are available in a wide variety of sizes to fit most applications. Portable injector units, driven by gasoline-powered pumps, are convenient for normal use and also for a variety of special applications.

Second, the injector may be plumbed in parallel with a pressure reducing valve as shown to the right, which automatically creates a pressure differential and suction pressure. Three typical configurations are shown in the following illustrations (courtesy of Mazzei[®] Injector Company). First, the injector may be plumbed in parallel with a simple, manually operated valve on the mainline circuit as shown to the left. Restricting flow on the mainline valve will create a pressure differential between the venture inlet and outlet, thereby creating suction pressure to the chemical line.

Third, they may be plumbed with a small booster pump that creates the needed pressure differential during chemical injection periods only, as shown to the right.

The illustration below shows the boosted venturi configuration in use on three separate chemical tanks. Typically, one tank would be used for fertilizer, one for chlorine and another for acid such that pH may be lowered while injecting chlorine from a separate tank, thus improving the chlorine efficacy. Additional tanks and injectors may be desired if more than one type of fertilizer or chemical other than acid and chlorine will be injected.

Boosted Venturi configuration

The choice of configuration depends on desired injection rate, standard system operating flow and pressure, and energy costs, and is best decided at the time of system design to maximize energy efficiency. It is best to consult with fertilizer and chemical suppliers in advance so that desired injection rates may be supplied to the irrigation designer.

Safety Considerations

Regardless of the injection system type, proper safety equipment must be employed to prevent chemicals from contaminating the water source or the surrounding environment, and to prevent chemicals from being injected without water being pumped. The figure below (Van der Gulik, 1999) shows the key safety features that should be employed in any chemigation system, including electrically interlocked control panels, check valves and approved backflow prevention devices.

This schematic illustrates the injection system safety features if the irrigation system includes an irrigation pump and injector pump.

4.4 Chemical Injection Formulas

Consult with a professional to determine the proper rate of chemical injection to achieve desired results, and to comply with all safety requirements and precautions.

Liquid Fertilizers

The amount of nutrient is stated as a percentage by weight on the label, such as 8-0-8. Once it's known how many pounds of nutrient is desired per acre, an application rate may be calculated. For instance, if a gallon of the 8-0-8 fertilizer weighs 10 pounds, then there are 10 lbs x .08 = .8 pounds of N per gallon. If 1 pound of N per acre is desired, then 1.0 / .8 = 1.25 gallons of liquid 8-0-8 would be needed per acre. If the field is 40 acres, then 40 x 1.25 = 50 gallons of fertilizer must be injected to the 40 acre field to apply 1 pound of N per acre.

Using metric units, once it's known how many kilograms of nutrient is desired per hectare, an application rate may be calculated. For instance, if 10 liters of the 8-0-8 fertilizer weighs 12 kg, then there are 12 kg x .08 = .96 kg of N per 10 liters. If 1 kg of N per hectare is desired, then $(1.0 / .96) \times 10 = 10.4$ liters of liquid 8-0-8 would be needed per hectare. If the field is 40 hectares, then $40 \times 10.4 = 416$ liters of fertilizer must be injected to the 40 hectare field to apply 1 kg of N per hectare.

Chlorine

To apply chlorine, one of the following three formulas is typically used, depending on the chlorine formulation used:

Liquid Form Sodium Hypochlorite NaOCI

General Formula, English Units:

- $IR = Q \times C \times 0.006 / S$
- Where IR = Chlorine Injection Rate (gallons/hour)
 - Q = System Flow Rate (qpm)
 - C = Desired Chlorine Concentration (ppm)
 - S = Strength of NaOCI Solution (percent)
- General Formula, Metric Units: $IR = Q \times C \times 0.1 / S$
- Where IR = Chlorine Injection Rate (liters/hour)
 - Q = System Flow Rate (m3/hr)
 - C = Desired Chlorine Concentration (ppm)
 - S = Strength of NaOCI Solution (percent)

Solid Form Calcium Hypochlorite Ca(OCI),

Calcium hypochlorite is normally dissolved in water to form a solution, which is then injected into the system. Calcium hypochlorite is 65% chlorine (hypochlorite) by weight. Therefore, a 1 percent chlorine solution would require the addition of 8.34/0.65 = 12.8 pounds of calcium hypochlorite per hundred gallons of water. Using a metric example, a 1 percent chlorine solution would require the addition of 1.0/0.65 =1.54 kg of calcium hypochlorite per hundred liters of water. Using this fact, a stock solution of the desired strength may be mixed and used in the same manner as sodium hypochlorite solutions.

Gaseous Form Cl,

Extreme caution should be used when using gaseous chlorine:

General Formula, English Units:

 $IR = Q \times C \times 0.012$

- Where IR = Chlorine Injection Rate (lb/day)
 - Q = System Flow Rate (gpm)
 - C = Desired Chlorine Concentration (ppm)
- General Formula, Metric Units:

 $IR = Q \times C \times 0.024$

- Where IR = Chlorine Injection Rate (kg/day)
 - Q = System Flow Rate (m3/hr)
 - C = Desired Chlorine Concentration (ppm)

When chlorine is dissolved in water, an equilibrium develops between HOCl and OCIdepending on the pH. The microorganism killing efficiency of HOCI is about 40 to 80 times greater than that of OCI-, and water having a low pH will result in higher concentrations of HOCI. Thus, lower water pH when injecting chlorine will produce a more potent biocide. Figure 4-3 shows this relationship (Boswell, 1990). Note the HOCI concentration at a pH of 6.0 is roughly 80%, while the HOCI concentration at a pH of 8.0 is only about 25%. Clearly, it's important to ensure proper pH in order to obtain benefit from chlorine applications.

84

Acid

In order to calculate the amount of acid to add to irrigation water to achieve the desired pH, a titration curve is necessary. This can be developed in a lab, or in the field with a 55-gallon (200 liter) drum filled with the irrigation water. Slowly add the type of acid you wish to inject to the drum and stir the water to ensure complete mixing. Measure the pH of the water along with the amount of acid added, then repeat until the desired pH is obtained. Once this ratio is known, it can be applied to the volume of water that will be applied during the irrigation. The Titration Curve shown in Figure 4-4 is typical for two different water samples with two different pHs (Boswell, 1990).

Chlorine and acid should always be injected from separate tanks and never mixed together.

SALINITY MANAGEMENT

Salinity Management

Irrigation water often contains salts that are left in the soil after the water has been removed through the evapotranspiration process. Where rainfall is insufficient, supplemental irrigation may be required to leach salts from the root zone, since many crops are sensitive to relatively low levels of salts and may incur a yield drop. The following charts (Hanson, 2003) illustrate how yields may decline with relatively low salt levels:

In arid regions where saline irrigation water is used, a buildup of salts will frequently occur on the soil surface. Salts also concentrate below the soil surface at the perimeter of the soil volume wetted by each emitter.

Operate the drip system during rain to ensure that salts are leached beyond the root zone. In the absence of rain, this buildup can be tolerated with occasional irrigations to perform leaching. However, if rain occurs before salts have been routinely leached away with irrigation, the rain may wash accumulated salts back into the root zone and threaten plant health. To avoid toxic salt levels in the root zone during a rain event, **run the irrigation system while it is raining until salts have been leached beyond the root zone**.

Emitter Spacing and Bed Shape Can Help

Salinity management is especially important during seed germination and emergence, and closely spaced emitters and bed shape can help. Use surface tape (or tape only a few centimeters below the soil's surface) with closely spaced emitters to leach salts downward. In more arid areas, widely spaced holes (i.e. one tape for every two rows, or hole spacing greater than 16 inches (40 cm) can cause salt buildup between the holes. Seeds later planted in those salty areas will not emerge. Decades of experience with flood irrigation have taught farmers to shape furrows so that salt-laden irrigation water evaporates at high points in the bed with the plants/seeds located at lower points (Burt, 2007).

Likewise, drip irrigated beds should be shaped with an indentation where salts will accumulate away from the seed line planted below the indentation. (Burt, pgs. 76-77). Salinity management is also important in established drip irrigated orchards and vineyards. Drip laterals typically wet less than 40% of the total soil surface. Over time, salts carried to this wetted strip through the irrigation water will safely leach away from

the soil close to the emitter. However, salts will concentrate in the soil as distance from the emitter increases. For this reason, the standard "leaching requirement" equations and principles for maintenance leaching are not applicable for drip/micro irrigation. Instead, periodic "reclamation" leaching is needed to remove the salt from these outer zones of the soil.

Target Leaching Reduces Waste

For reclamation, either broadcast flood or sprinkler irrigation is typically used to leach these concentrated salts below the root zone, but it can be wasteful since only 20-40% of the surface area of the orchard or vineyard needs to be leached. If 100% of the soil area is wet to treat this 20-40% of the area, 2.5 to 5.0 times the necessary leaching water will be applied. Most of the water is ineffective because it is applied to zones that do not need leaching. Instead, ITRC researchers have suggested using a portable drip tape system to "target leach" the orchard or vineyard dripline zone. In 2005, Burt and Isbell showed that salts were effectively removed in a pistachio orchard using six lines of retrievable surface drip tape with emitters spaced closely, 12 inches (30 cm) apart, to "target leach" the dripline zone (see photo below). Subsequent leaching experiments closely match the pistachio orchard results. Once leaching is complete, the drip tape can be retrieved and reused. In this way, closely spaced tape emitters perform leaching with less water (Burt, pgs. 82-83).

Improving Yield

Drip irrigation can also help dilute soil salinity to improve yields. Yields typically decrease once the soil salinity reaches a threshold value, and as the soil dries between traditional irrigations, salinity concentration becomes worse. Irrigating frequently with closely spaced emitters can help. Studies and experience show that if drip is managed so that the soil salinity remains dilute, yields can be higher than they would be with the same water quality using sprinklers or furrow irrigation. For some crops such as processing tomatoes, some research (Hanson and May, 2003) has observed that on very salty fields the crops have no damage even though the salinity levels would traditionally cause serious yield declines. (Burt, pg. 86).

SYSTEM MAINTENANCE

- 6.1 Apply Chemicals
- 6.2 Flush the System
- 6.3 Control Pests
- 6.4 Service the Filtration System
- 6.5 Service the Accessory Equipment
- 6.6 Winterize the System
- 6.7 Startup Procedures

System Maintenance

For optimal performance, drip systems require routine system maintenance. Even though recent innovations in drip tape design have made clog-resistant drip tapes readily available, the nature of agricultural water sources, fertilizer injection practices, natural limitations of filtration equipment and the general agricultural growing environment make maintenance a priority. Obviously, a clogged drip system could spell disaster for the current crop and jeopardize a significant investment. As mentioned earlier, taking baseline readings and monitoring flow, pressure and the condition of flush water regularly will provide guidance when maintenance should be scheduled.

Drip Irrigat	tion System Ma	intenance Tip	s for the Grow	ving Season
What to Check	Frequency	Compared to What	What to Look For	Possible Causes
Pump flow rate and pressures for each zone	Weekly	Design or benchmark flow rate and pressures	 High flow and/or low pressure Low flow and/or high pressure 	Leaks in pipelines Leaks in laterals Opened flush valves; Opened ends of laterals Closed zone valves; Pipeline obstruction Tape clogging Pump malfunctions; Well problems
Pressure difference across filter	Every irrigation	Manufacturer's specifications	• Exceeds or is close to maximum allowable	Filter becomming cloggedObstruction in filter
Operating pressures at ends of laterals	Monthly, unless other checks indicate possible clogging	Benchmark pressures	Pressure greater than expected Pressure lower than expected	Possible clogging; Obstruction in tape Broken lateral; Leaks in lateral; Low system pressure
Water at lateral ends & flush valves	Bi-weekly	Water source	 Particles in water Other debris 	 Broken pipeline Hole in filter screen; Tear in filter mesh Paticles smaller than screen; Filter problem Chemical/fertilizer precipitation Algae growth; Bacterial growth
Overall pump station	Weekly	Manufacturer's specifications	• Leaks, breaks, engine reservoir levels, tank levels	Poor maintenance Old equipment
Injection pump settings	Weekly	Calibrated setting at start up	 Proper setting for length of injection time 	
Overall system	Weekly	System at start up	 Discoloration at outlets or ends of laterals Leaks in tape Wilting crop 	 Indicates possible build up of minerals, fertilizer, algae, and/or bacterial slime. Pest or mechanical damage Tape off of fittings Tape blowout from high pressure Crop may also be affected by pathogens Tape clogged, obstructed, or broken.

Maintenance Checklist

The table on the preceding page (Simonne et al., 2008, pg. 18) provides a checklist of what to inspect and when. Note that in addition to flow, pressure and condition of flush water, the overall condition of the pump station and distribution system should be routinely inspected and/or calibrated including control equipment, engines, motors, reservoirs, injectors, pipelines, valves, fittings, flow meters and pressure gauges. Broken or dysfunctional equipment should be replaced or repaired immediately with the same or similar equipment that will perform the same function according to system design criteria.

Aside from making equipment adjustments or repairs, the majority of system maintenance activities usually fall into three major categories: applying chemicals, flushing the system and controlling pests.

6.1 Apply Chemicals

Acid and/or chlorine are commonly injected into drip systems — each from its own separate tank using a separate injector for safety reasons — to treat the water and prevent clogging from organic growth, mineral precipitation and/or root intrusion. The following Table 5 (Rogers, 2003) summarizes the various problems and treatment options for chemical and biological growth problems in conventional systems. Note that all but one treatment option (aeration and settling) involves the use of chlorine or acid, and that mineral concentrations as low as .1 ppm can lead to clogging. Also note the importance of pH control, and that treatment options include intermittent or continuous injection strategies.

Water Treatments to Prevent Clogging in Drip Irrigation Systems								
Problem	Treatment Options							
Carbonate precipitation (white precipitate) HCO3 greater than 2.0 meq/l – pH greater than 7.5	 Continuous injection: maintain pH between 5 and 7. Periodic injection: maintain pH at under 4 for 30 to 60 minutes daily. 							
Iron precipitation (reddish precipitate) Iron concentrations greater than 0.1 ppm	 Aeration and settling to oxidize iron. (Best treatment for high concentrations of 10 ppm or more). Chlorine precipitation – injecting chlorine to precipitate iron: Use an injection rate of 1 ppm of chlorine per 0.7 ppm of iron. Inject in front of the filter so the precipitate is filtered out. Reduce pH to 4 or less for 30 to 60 minutes daily. 							
Manganese precipitation (black precipitation) Manganese concentrations greater than 0.1 ppm10	1. Inject 1 ppm of chlorine per 1.3 ppm of manganese in front of the filter.							
Iron bacteria (reddish slime) Iron concentrations greater than 0.1 ppm	1. Inject chlorine at a rate of 1 ppm free chlorine continuously, or 10 to 20 ppm for 30 to 60 minutes daily.							
Sulfur bacteria (white cottony slime) Sulfide concentrations greater than 0.1 ppm	 Inject chlorine continuously at a rate of 1 ppm per 4 to 8 ppm of hydrogen sulfide – or – Inject chlorine intermittently at 1 ppm free chlorine for 30 to 60 minutes daily. 							
Bacterial slime and algae	1. Inject chlorine at a rate of 0.5 to 1 ppm continu- ously, or 20 ppm for 20 minutes at the end of each irrigation cycle.							
Iron sulfide (black sand-like material) Iron and sulfide concentrations greater than 0.1 ppm	 Dissolve iron by injecting acid continuously to lower pH to between 5 and 7. 							

In addition to chemical and biological problems, acid and chlorine are often used to remedy root intrusion problems. Many growers report that root intrusion may be prevented if irrigations are frequent — and if deficit irrigation and seamed tapes are avoided. If roots have entered the flowpath, growers have achieved success by:

- Applying acid or acidic fertilizers once a week to reduce the pH to 2.0 while the crop is still being grown. If acidic fertilizers are used, soil pH should be monitored carefully to avoid detrimental effects to the soil chemistry.
- Superchlorinating to 400 ppm and at a pH of 6.0 6.5 for long enough to fill the tubes with water, after the crop has been removed. (Burt 2007, pg. 272).
- Using various other pesticides and fumigants. Consult with local experts to ensure safe, effective and legal chemical application.

Use seamless Aqua-Traxx drip tape to avoid root intrusion.

Organic Farming

In addition to conventional farmers, organic farmers use drip irrigation since spoon-feeding water and fertilizer directly to the root zone often reduces weed growth, disease and pest problems — all of which are difficult or expensive to control without chemicals. Research has shown, as illustrated here, that furrow and sprinkler irrigated

Weed growth is drastically reduced in subsurface drip irrigation fields. fields experience severe weed growth without herbicides, while drip fields experienced little (Lamm, 2007 after Grattan et al). Although this

benefit is significant for all drip-irrigated fields, it's especially important where chemical control is not allowed.

Since many of the materials routinely applied for system maintenance in conventional fields aren't allowed in organic fields, alternative materials must be used. Likewise, since many of the alternative materials used in organic fields are prone to clog a drip irrigation system, it's wise to install secondary filtration at each zone in case materials precipitate out of solution between the pump station filter outlet and the inlet to the zone (see Typical Drip System Layout illustration on page 8).

The National Organic Program (NOP) Standards for Drip Irrigation (Simonne, et al 2008, pg 14) below provide guidance regarding what drip maintenance materials are allowable in certified organic production. (Check with local authorities if outside the United States).

		NOP Standards for Drip Irrigation	
Status ^y	NOP Class [×]	Material Name	NOP CFR Rule Reference
		Water	
Allowed	СТ	Water, non-synthetic. Levels of contaminants in crops grown with water, polluted by unavoidable residual environmental contamination, cannot exceed 5% of the EPA tolerance for these contaminants in conventionally grown crops.	205.105, 205.671
		Drip Irrigation Maintenance Products	
Allowed	СТ	Acetic acid, non-synthetic. For use as a drip irrigation cleaner.	205.05, 205.601(m)
Allowed	СТ	Chelates, non-synthetic. Non-synthetic chelates; including, amino acid, citric acid, tartaric acid, other di- and tri-acid chelates, and synthetic lignin sulfonate are allowed.	205.105
Prohibited	СТ	Chelates, synthetic. Prohibited chelating agents; including, DTPA, EDTA, HEDTA, NTA, glucoheptonic acid and its salts, and synthetic amino acids.	205.105(a)
Restricted	СТ	Chlorine materials, synthetic. Calcium hypochlorite, sodium hypochlorite, chlorine dioxide. Flush water from cleaning irrigation equipment that is applied to crops or fields cannot exceed the Maximum Residual Disinfectant Limit under the Safe Drinking Water Act – currently 4 mg/L [4 ppm] expressed as chlorine. For use as algaecide, disinfectant, and sanitizer.	205.601(a)(2)
Allowed	СТ	Citric acid, non-synthetic. Used as a drip irrigation cleaner and pH adjuster.	205.105
Allowed	СТ	Drip irrigation cleaners, non-synthetic. Allowed non-synthetic drip irrigation cleaners include acetic acid, vinegar, citric acid, and other naturally occuring acids.	205.105
Prohibited	СТ	Drip irrigation cleaners, synthetic. Prohibited drip irrigation cleaners include: nitric, phosphoric, and sulfuric acids.	205.105(a)
Restricted	СТ	Drip irrigation cleaners, non-synthetic. Restricted non-synthetic drip irrigation cleaners include: bleach, and chlorine products.	205.601(a)(2)
Prohibited	СТ	Hydrochloric acid (muratic), synthetic.	205.105(a)
Allowed	СТ	Hydrogen peroxide, synthetic. As algaecide, disinfectant and sanitizer; including irrigation system cleaning systems.	205.105(a)(4)
Allowed	CT, CP	Natural acids, non-synthetic.	205.105, 205.206
Restricted	CT, CP	Ozone gas, non-synthetic. For use as an irrigation system cleaner only.	205.601(a)(5)(F)
Allowed	СТ	Peracetic acid, non-synthetic. For use in disinfecting equip- ment.	205.601(a)(6)
Allowed	СТ	pH buffers, non-synthetic. Must be from a non-synthetic source; such as, citric acid, or vinegar. Lye, and sulfuric acid are prohibited.	205.105
Prohibited	СТ	pH buffers, synthetic. Buffers; such as, lye, and sulfuric acid are prohibited. ^w	205.105
Prohibited	СТ	Phosphoric acid, synthetic.	205.105(a)

When applying acid or chlorine, remember the following safety precautions:

ALWAYS ADD ACID TO WATER. NEVER ADD WATER TO ACID.
 NEVER MIX OR STORE ACID AND CHLORINE TOGETHER.

6.2 Flush the System

System flushing is often overlooked or given lower priority in surface drip systems. However, in SDI systems, system flushing must be given high priority since frequent tape replacement is impractical and tape is expected to last up to 20 years or longer. But even for short term tape use, flushing is important to maintain system uniformity. Thus, whether surface drip or SDI, it's imperative that the system not only be designed for high application uniformity, but for flushing as well to rid the system of settled debris in the pipelines and emitters. The Typical Drip System Layout diagram shows the various flushing options including a flushing submain for SDI systems, semi-permanent Oval Hose flushing submains, end-of-the-line flush valves and simple end-of-the-line fittings. Chapter 2 shows detailed information on how these connections are made.

Various end-of-the-line configurations are available for both surface and subsurface drip irrigation systems.

In most cases, tape length of run and pipeline sizes will be dictated by flushing velocity requirements rather than a targeted emission uniformity, and pumps will be sized according to flushing flow requirements. The Appendix provides five graphs illustrating the relationship between flushing flow and pressures vs. normal operational flows and pressures. In Figures 13.15 and 13.16 (Lamm, 2007), inlet pressure requirements can be up to 15 psi (100 kPa) and flows over triple the nominal to achieve a flushing velocity of .3 m/s (1 foot per second, fps) and downstream pressures of 1, 2 and 3 psi (7, 14 and 21 kPa) in 7/8" (22 mm) tape with .56 gpm/100' (7.71 LPM/100m) and .22 gpm/100' (3.12 LPM/100m) flow rates. Similarly, Figures 196, 198 and 200 (Burt 2007) clearly illustrate this point as well in 5/8" (16 mm) tape with .22 gpm/100' (3.12 LPM/100m) flow rate. Curve f in these charts include downstream pressures as high as 6 psi (40 kPa) and show that

Flush the system routinely with adequate pressure and flow. much higher inlet pressures and inlet flows are required when 6 psi (40 kPa) downstream pressure is needed to overcome elevation and friction losses in the flushing manifold. This downstream flushing pressure takes on new importance as shown in the illustrations below since significant friction losses occur in the flushing submain assembly, pipes and valves. In addition, elevation changes occur between the tape, the flushing manifold and the flush valve. These friction losses must be considered when determining system flushing pressure and flow to achieve adequate flushing velocity, and are best considered at the time of system design.

96

The adjacent photos show a hybrid SDI system where the ends of the buried tape lines have been brought to the surface. In this case, each line is opened manually and flushed until the water runs clear.

The previous illustration, "Translating Flushing Trajectory into Flushing Velocity at Three Heights," may be used by field personnel to determine whether adequate flushing velocities are being achieved during manual flushing. This is determined by measuring the distance of water flushing trajectory from the end of the hose, and then comparing that distance with flushing velocity on the chart. For instance, if a tape lateral is held one foot (0.3 meters) above ground level, and the flushing trajectory is eight inches (200 mm), then the flushing velocity is about 3.0 fps (0.8 m/s), which is more than adequate since 1.0 fps (0.3 m/s) is the standard.

Flushing should occur as often as needed to keep lines clean and will depend on seasonal water quality, temperature and the effectiveness of the system filter. Mainlines, submains and laterals should be flushed sequentially until flush water runs clear for at least two minutes. Flush water should be disposed of properly to avoid deteriorating the system's inlet water quality and/or the quality of the environment surrounding the site. And since inlet pressures and system flows are significantly higher during flushing events, they must be supported with proper pumps, pipelines, dripline or drip tapes to perform flushing properly.

6.3 Control Pests

Because drip tape is susceptible to mechanical damage by mammals, rodents and insects, pests must be controlled or managed. A wide range of treatment options are available, including chemigation. Before chemigation is performed, ensure that the product is labeled for the application and that all safety requirements and best management practices requirements are met.

Make monitoring for pests part of your routine so that control measures can be implemented before damage is done. Animal damage to SDI systems can be a significant problem, especially in areas bordering on undeveloped land. Burrowing animals — such as gophers, rats, mice, voles, and ground squirrels — can cause damage to surface or buried polyethylene laterals. Rather than searching for water, these rodents are often gnawing on hard materials to wear down their continuously growing teeth (Lamm, 2007). Other animals, including crows and coyotes, have been known to damage lateral lines, apparently in search of water. If present in sufficient numbers, these animals are able to heavily damage a micro irrigation system.

Basic Solutions for Pest Problems

The four basic solutions for pest problems are:

- 1. Using repellents to keep animals away from the lateral lines
- 2. Baiting or trapping to control the animal population
- 3. Elimination of the animals' food supply
- 4. Providing a drinking water source other than the lateral lines

Repellents

Repellents keep animals away through some type of chemical that tastes or smells bad to the animal. Repellents may either be injected through the system or laid down with the laterals during installation. Generally speaking, injection of the chemical through the system is the preferred technique, since chemicals applied during installation will eventually lose their potency or be leached away over time. There are a number of chemicals available which are noxious to animals, including anhydrous or aqua ammonia and a number of insecticides.

Trapping

Trapping is often effective on smaller installations, but may be impractical for large acreages because of the high labor requirement. Trapping may be valuable in determining what species of animal is responsible for the damage. Baiting is often achieved manually, by injecting bait underground with a tractor, or by ground or aerial application, and is effective and economical in most cases.

Food Supply

Weeds or the crop itself may provide a food supply for burrowing animals. If the food supply is weeds, weed control may eliminate the problem. If the food supply is the crop, then control of the animal population will probably be beneficial in terms of the health and yield of the crop.

Thirsty animals may damage surface or buried laterals by chewing in search of water. Some farmers have reduced this damage by placing water buckets in strategic locations. These may be kept full by means of an emitter plugged into a lateral line. (Boswell, 1990).

Pest Control

To control pests, Burt et al (2007) recommends 1) using thick wall tape, 2) turning the irrigation system on as soon as the tape is installed, 3) killing insects with chemicals such as Vapam, Ridamil and Diazinon, 4) using owl boxes to control gophers, 5) using "noise" to frighten animals away, 6) providing water basins in the hope that critters will drink from them rather than chew on drip lines, 7) providing cow bones to play with rather than drip lines, and 8) eliminating the animals.

Howard Wuertz of Sundance Farms in Coolidge, Arizona applies the soil fumigant Telone before planting for root knot nematode and gopher control in SDI fields planted to alfalfa. Traps along the field edges keep other gophers at bay from the drip system (Western Farm Press, May 2009).

As always, before chemigation is performed, ensure that the product is labeled for the application and that all safety requirements and best management practices requirements are met. Lamm (2007) provides specific information on burrowing depths and habitat preferences of some burrowing mammals in the United States, and reports that many burrowing mammals of concern in the U.S. have a typical activity depth range of less than 18 inches (0.5 meters). Thus, burying drip lines below 18 inches (0.5 meters) may avoid some rodent damage.

6.4 Service the Filtration System

Maintaining the filtration system is central to overall system maintenance. Sand media, cyclonic, screen and disk filters, as well as settling basins, all require routine attention during and at the end of the irrigation season. The illustration below shows many of the filters typically used in drip systems (Lamm, 2007). They can all perform well in any given application providing they are sized properly to filter the given water quality to the degree required to protect the emission devices. Toro provides filtration requirements for all their emission devices, and most filter manufacturers rate the level of filtration achieved in screen size mesh. Table 9.4 on page 104 of the Appendix translates these ratings into equivalent inches, millimeters or microns of opening size. If the filter requires servicing too often, it may be undersized, the wrong technology for the application, or filtering at too fine a level unnecessarily.

Monitoring Pressure Differential

Most filters incur increasingly higher friction losses between the filter inlet and outlet as the filter becomes clogged. Monitor the filter pressure differential frequently, especially as water conditions change through

All filters should be thoroughly inspected and serviced at least once a year. the season. Excessive pressure differential may lead to debris passing through the filters and/or poor irrigation system performance. Many filter systems are automated and will self-clean via an electric or hydraulic 3-way backflush valve when a pre-set filter differential is reached. For this procedure, the water flow is reversed for a short time to carry away debris through a backflush line. Filters may also be serviced manually by activating 3-way backflush valves by hand, or by taking the screen or disk cartridge out of the filter housing and cleaning it with pressurized water and/or brushes.

Inspecting the Filters

Care should be taken that the system is off and unpressurized when filters are serviced. Screen filters should be inspected for clogging, tears or corrosion, and disk filters inspected for wear or clogging of the grooves within the disk stack. O-rings should also be inspected for wear. Sand media filters should be drained and allowed to dry so that the sand level can be checked, and the sand inspected for signs of caking or other problems. Many irrigators replace the sand media as often as once a year. The flush water control valve

setting should also be inspected to verify that excess sand is not exiting the filter during backflush. A clear sight glass, as shown to the left, is often installed for this purpose. If filters are automated, valve, solenoid and controller functionality should be verified. Finally, filters and settling basins should be chlorinated periodically to prevent the growth of microorganisms.

6.5 Service the Accessory Equipment

Valves, regulators, flow meters, pressure gauges, controls and pumping equipment should be inspected periodically to ensure proper settings and functionality. Make sure valve diaphragms, o-rings, solenoids and control tubing are in good working order, and that any electrical wires are intact. Lubricate mechanical devices as necessary. Flow meters should be professionally calibrated periodically, and pressure gauge readings should be verified with a reliable liquid- or glycerine-filled gauge of known accuracy.

6.6 Winterize the System

Winterizing the system is necessary in climates where water will freeze and expand, possibly damaging plastic and metal system components. Polyethylene drip laterals are not subject to damage from freezing since emission devices provide drainage points and polyethylene is somewhat flexible. However, water from filters, valves, chemigation equipment, pressure regulators, risors and buried pipelines should be evacuated with a pump or air compressor, especially at low ends of the field where water typically accumulates. In addition, systems are often cleansed prior to a winter shut-down period. This normally includes chemical injection, flushing of all pipelines, and cleaning the filter.

6.7 Startup Procedures

Startup procedures after a period of inactivity are similar to those performed after system installation. In summary, the system should be carefully pressurized and inspected for leaks and system integrity. This includes verifying the functionality of all system components including filters, valves, controllers, chemigation equipment, flow meters, pressure gauges, pressure regulators and flush valves. Once the system is operational, chemicals should be injected if necessary, and then the system should be thoroughly flushed. Baseline readings should then be recorded and compared with specifications, and adjustments made if needed.

MAXIMIZING YOUR

Maximizing Your Investment

No discussion about drip irrigation would be complete without addressing the cost. The benefits have been clearly defined, but whether they merit the investment depends on numerous site-specific variables that affect profitability and overall benefits. The chart to the right is only a partial list with a focus on economic return on the investment. However, as the sustainable agriculture movement continues to grow as of this writing in December 2009, many value the non-monetary benefits of drip irrigation as well, if not even more. For instance, SDI may be successfully integrated into no-till operations, and the reduction of weeds and diseases in row crop and permanent crop operations are important benefits. Perhaps most importantly, drip irrigation technology helps reduce the use of valuable resources such as water, fertilizer and energy while at the same time helps increase the productivity per unit of land farmed. As world leaders struggle to determine how stretched resources will feed more people in the future, drip irrigation is often cited as one of the technologies

Drip Affects Farm Profitability 1. **Increased Revenue** Yield Improved quality/uniformity 2. Reduced Resource Use (costs) Water Fertilizer Energy Labor Chemicals Equipment Insurance 3. Flexibility Field accessibility Irrigate odd-shaped fields 4. Environmental Stewardship • Reduced runoff and deep percolation Reduced evaporation and wind drift Improved wildlife habitat

that will help solve this pressing problem. In summary, regardless of whether the benefits are considered to be economic or social, they are real and are being discovered by growers throughout the world each day.

Drip/Micro Payback Wizard

To help growers evaluate the economic benefit, Toro's "Drip/Micro Payback Wizard" can be used to estimate how long it takes to offset the investment of a new drip or micro irrigation system, along with how many additional acres could be farmed with the water saved by using this cost-effective technology. Developed in partnership with the Irrigation Association (IA), this new online tool is designed to help growers easily recognize the cost savings and determine the payback period of converting to a drip or micro irrigation system. The tool may be accessed at toro.com or driptips.toro.com.

The Payback Wizard is simple to use. Growers simply submit information on five criteria — their state, the type of crop, how many acres, their current irrigation system (gravity, sprinkler or mechanized) and their water cost per acre-foot. In seconds, the Payback Wizard analyzes the grower's production and investment costs, as well as projected revenue increases, to estimate the payback period and additional acres that could be farmed with the water saved. From these results, farmers can view more detailed data produced by the Payback Wizard and adjust the input values to better reflect a specific production scenario. A final report may also be printed from the Drip/Micro Payback Wizard, an example of which may be found in the Appendix.

Although every scenario is different, there are impressive documented results. For instance, the payback period was 1.5 years at Cox Farms in Longview, KS, using Aqua-Traxx drip tape on field corn (see the summary below).

Drip Irrigation Payback P	eriod at Cox Farms*
Drip Irrigation System Investment	\$1,100.00 per acre (\$2,700 per hectare)
Equipment cost share (30% of cost)	\$330.00 per acre (\$810 per hectare)
Grower Inves	tment \$770.00 per acre (\$1,890 per hectare)
Potential Yield Increase with Drip (assuming 175 bushels/acre or 430 bushels/hectare with Gravity)	100 bushels per acre (250 bushels per hectare)
Corn price	\$3.50 per bushel
Potential Additional Re	venue \$350.00 per acre
	(\$875 per hectare)
Potential Savings	
Fuel savings	\$25.00 per acre (\$62.00 per hectare)
Labor savings	\$26.62 per acre (\$65.75 per hectare)
Chemical/Fungicide savings	\$27.50 per acre (\$67.90 per hectare)
Fertilizer savings	\$43.88 per acre (\$108.38 per hectare)
Cultivation savings	\$37.50 per acre (\$92.62 per hectare)
Potential Cost Sa	avings \$160.50 per acre
	(\$396.65 per hectare)
Payback Calculation	n† 1.5 years

* Results based on specific conditions - variations may apply

+ Grower investment divided by sum of Potential Additional Revenue and Potential Cost Savings

Conclusion

In conclusion, it's important to remember that a drip irrigation system may require superior management and additional investment of time and capital, especially during the learning curve. However, the vast majority of system owners report that, once mastered, there's no better way to farm. Many wish they had invested sooner.

We hope you experience the many benefits of drip irrigation, and we pledge to provide assistance if needed. As noted in the chart below, Toro Ag can provide considerable resources in the adoption and operation of drip irrigation systems; note the numerous benefits of working with Toro and our extensive network of Qualified Dealers. In addition to this Manual, extensive product and education information is also available at **driptips.toro.com** and **toro.com** as noted on the next page. We look forward to your next visit!

driptips.toro.com

toro.com

REFERENCES

References

- AgriMet, 2009. Pacific Northwest Cooperative Agricultural Weather Network. United States Bureau of Reclamation, http://www.usbr.gov/pn/agrimet/cropcurves/crop_curves.html
- Ayers, R.S., 1977. Quality of Water for Irrigation. Am. Soc. Civil Engr. Proc. J. Irrig. & Drain.
- Blake, Cary, 2009. Drip Irrigation Increasing Alfalfa Yields. Western Farm Press, www.westernfarmpress.com
- Boswell, M., 1990. Micro-Irrigation Design Manual, Hardie Irrigation, El Cajon, CA. toro.com
- Bucks, D.A. and F.S. Nakayama, 1980. Injection of Fertilizer and Other Chemicals for Drip Irrigation. Proc. Agri-Turf Irrig. Conf., The Irrigation Association.
- Burt, C. and S. W. Styles, 2007. Drip and Micro Irrigation Design and Management for Trees, Vines, and Field Crops, 3rd Edition, Irrigation and Training Resource Center (ITRC), California Polytechnic State University, San Luis Obispo, CA. www.itrc.org
- Burt, C and K. O'Conner and T. Ruehr, 1995. Fertigation, Irrigation and Training Resource Center (ITRC), California Polytechnic State University, San Luis Obispo, CA, www.itrc.org
- California Irrigation Management Information System (CIMIS), 1999. Reference Evapotranspiration for California. University of California, Davis and California Department of Water Resources.
- Carpentier, Dale, 2003. Sedimentation Test of Soil Texture. Edited by the Georgia Agriculture Education Curriculum Office.
- Center for Irrigation Technology (CIT), 2009. Waterright scheduling tool, (www.wateright.org).
- Hanson, Blaine, Stephen Grattan and Allan Fulton, 2003. Agricultural Salinity and Drainage, University of California Irrigation Program, Davis, CA. Publication #93-01. lawrweb@ucdavis.edu
- Hanson, Blaine and L. Schwankl, Stephen Grattan and T. Pritchard, 1994. Drip Irrigation for Row Crops. University of California, Davis, CA. Publication #93-05. lawrweb@ucdavis.edu
- Improving Plant Life. www.improvingplantlife.com/information-about-plant-nutrients/
- Klauzer, Jim, 2009. Photos of Aqua-Traxx wetting patterns. Clearwater Supply, Othello, Washington. www.cwsupply.com
- Lamm, F and James Ayers and Francis Nakayama, 2007. Microirrigation for Crop Production: Design, Operation and Management. Elsevier, Oxford, UK. www.oznet.ksu.edu
- Lamm, F and Danny H. Rogers, 2009. Keys to Successful Adoption of SDI: Minimizing Problems and Ensuring Longevity. Proceedings of the 21st Annual Central Plains Irrigation Conference, Colby, Kansas. www.oznet.ksu.edu
- Mikkelsen, Rob, 2009. Fertilizer Efficiency with Drip and Microsprinklers. International Plant Nutrition Institute. rmikkelsen@ipni.net

NASA/EOS project. Average ET for North America. http://secure.ntsg.umt.edu/projects/files/images/mod16/global_ET/ET_avg_NACP.png

- NASA GSFC Water and Energy Cycle website. http://nasascience.nasa.gov/images/oceans-images/water_cycle.jpg/image_preview
- Phene, C.J., K.R. Davis, R.L. McCormick, R. Hutmacher, J. Pierro. 1988. Water-fertility management for subsurface drip irrigated tomatoes. Proceedings, International Symposium on Integrated Management Practices for Tomato and Pepper Production in the Tropics, Shanhua, Taiwan, ROC.
- Plaster, Edward J., 2003. Soil Science and Management, 4th Edition. Delmar Learning, Lifton Park, NY
- Rogers, Danny and Freddie Lamm and Mahbub Alam, 2003. Subsurface Drip Irrigation Systems (SDI) Water Quality Assessment Guidelines. Kansas State University Publication #2575. www.oznet.ksu.edu
- Schwankl, L. and T. Prichard, 2001. Chemigation in Tree and Vine Micro Irrigation Systems, Publication 21599, University of California Division of Ag & Natural Resources.
- Simonne, Eric et al., 2008. Drip-irrigation Systems for Small Conventional Vegetable Farms and Organic Vegetable Farms. University of Florida, IFAS Extension document #HS1144. www.edis.ifas.ufl.edu
- Snyder, et al. Using Reference Evapotranspiration (ETo) and Crop Coefficients to Estimate Crop Evapotranspiration (ETc) for Trees and Vines. University of California Cooperative Extension, Leaflet #21428.
- Techalive, 2009. http://techalive.mtu.edu/meec/module01/images/transpiration.jpg
- Thien, S.J. 1979. A Flow Diagram for Teaching Texture-By- Feel Analysis. Journal of Agronomic Education. 8:54-55.
- Truog, Emil, 1943. The Liming of Soils. USDA Yearbook of Agriculture, 1943 1947. http://naldr.nal.usda.gov/NALWeb/Agricola_Link.asp?Accession=IND43893966)
- Toro Ag, 2009. toro.com, driptips.toro.com
- United States Bureau of Reclamation (USBR), 2000. Achieving Efficient Water Management: A Guidebook for Preparing Agricultural Water Conservation Plans.
- United States Department of Agriculture (USDA), 1997. Irrigation Guide: National Engineering Handbook. NRCS.
- United States Department of Agriculture (USDA), 1998. Estimating Soil Moisture by Feel and Appearance.
- Van der Gulik, T.W., 1999. B.C. Trickle irrigation Manual. B.C. Ministry of Agriculture and Food, and the Irrigation Industry Association of British Columbia, Abbotsford, B.C. Canada
- Westcot, D.W. and R.S. Ayers, 1984. Irrigation Water Quality Criteria. Report No. 84-1, California State Water Resources Control Board.
- Wolfram, William L. (Bill), 2008. New Developments in Drip Irrigation. Presentation to American Society of Plasticulture. Toro Ag, El Cajon, CA. toro.com

APPENDIX

Appendix

World Climates

Average Precipitation, North America

Average Precipitation, South America

California Irrigation Management Information System (CIMIS) Reference Evapotranspiration

Sedimentation Test Procedure to Determine Soil Texture (Carpentier, 2003)

The sedimentation test is an easy way to measure the percent sand, silt, and clay in a soil sample. It's based on the fact that large heavy particles will settle most rapidly in water, while small light particles will settle most slowly. The Calgon[™] laundry powder is used to create a solution that will dissolve the soil aggregates and keep the individual particles separated.

Materials

- Soil sample, 1/2 cup (125 ml)
- One quart (liter) jar with lid
- 8% Calgon solution (to create the 8% solutions, mix 6 tablespoons (90 ml) of dry Calgon laundry powder into one quart (liter) of water)
- Metric ruler
- Measuring cup
- Tablespoon (15 ml spoon)

Procedure

- 1. Place about ¹/₂ cup (125 ml) of soil in the jar. Add 3 ¹/₂ cups (450 ml) of water and 5 tablespoons (75 ml) of the Calgon solution.
- 2. Cap the jar, shake for 5 minutes and then let stand for 24 hours.
- 3. After 24 hours, measure the depth of settled soil. All soil particles have settled so this is the Total Depth. Write it down and label it.
- 4. Shake for another 5 minutes. Let stand 40 seconds. This allows sand to settle out. Measure the depth of the settled soil and record as Sand Depth.
- 5. Do not shake again. Let the jar stand for another 30 minutes. Measure the depth, and subtract the sand depth to get the Silt Depth.
- 6. The remaining unsettled particles are clay. Calculate clay by subtracting silt and sand depth from total depth to get Clay Depth.
- 7. Now calculate the percentage of each soil separate using these formulas:

% sand = sand depth / total depth x 100

- % silt = silt depth / total depth x 100
- % clay = clay depth / total depth x 100
- Using the soil texture triangle below and in Chapter 4, trace where these percentages of clay, silt and sand content intersect, and read the Soil Texture.

Flushing Pressure and Flow Graphs (Lamm, 2007)

Figure 13.15. Required inlet pressure to maintain a 0.3 m/s dripline flushing velocity, as affected by the nominal emitter flowrate, dripline length, and downstream pressure. Results for hypothetical dripline calculated with software from Toro-Ag Irrigation (2002).

Figure 13.16. Ratio of required flushing flowrate to nominal design flowrate to maintain a 0.3 m/s dripline flushing velocity as affected by nominal emitter flowrate, dripline length, and downstream pressure. Results for hypothetical dripline calculated using software from Toro Ag Irrigation (2002).

Flushing Pressure and Flow Graphs (Burt, 2007)

Figure 196. Inlet pressure vs. length for 0.625" (15.9mm) ID drip tape. <u>**Q=0.22 GPM/100'**</u> @ 8 psi (1.64 lph/m @ 55 kPa) (excluding c.v. consideration). Various downstream pressures and fixed flushing flow of 1 GPM, (0.063 LPS) x = 0.5, zero slope.

Figure 198. Inlet flow vs. length for 0.625" (15.9mm) ID drip tape. Q = 0.22 GPM/100" (2) 8psi (1.64 lph/m (2) 55 kPa) (excluding c.v. consideration). Various downstream pressures and fixed flushing flow of 1 GPM (0.063 LPS), x = 0.5, zero slope.

Flushing Pressure and Flow Graphs (Burt, 2007)

Figure 200. Relative inlet flow requirements during flushing for low flow tape. (0.625" ID, 0.22 GPM/100' @ 8 psi).

TABLE 9-4: SC	REEN FILTER	OPENING SIZE	EQUIVALENTS
---------------	-------------	--------------	-------------

Screen Size		Opening Size	
Mesh	inches	mm	micron
20	0.0280	0.711	711
40	0.0165	0.420	420
80	0.0071	0.180	180
100	0.0060	0.152	152
120	0.0049	0.125	125
140	0.0041	0.105	105
180	0.0035	0.089	89
200	0.0030	0.074	74
270	0.0021	0.053	53
325	0.0017	0.044	44

TO CONVERT	INTO	MULTIPLY BY
acres	hectares	0.4047
acres	sq feet	43,560
acres	sq meters	4,047
acres	sq miles	1.562x10-3
acres	sq yards	4,840
acre-feet	cu feet	43,560
acre-feet	gallons	3.259x10+5
atmospheres	ft of water	33.90
atmospheres	in of mercury	29.92
atmospheres	kg/sq cm	1.0333
atmospheres	kg/sq meter	10,332
atmospheres	pounds/sq in	14.70
bars	atmospheres	0.9869
bars	dynes/sq cm	1.0x10+6
bars	kg/sq meter	1.020x10+4
bars	pounds/sq ft	2,089
bars	pounds/sq in	14.50
BTU	kilowatt-hrs	2.928x10-4
Centigrade	Fahrenheit	(C x 1.8)+32
centimeters	feet	3.281x10-2
centimeters	inches	0.3937
centimeters	millimeters	10
cubic centimeters	cu inches	0.06102
cubic centimeters	gallons (U.S.)	2.642x10-4
cubic centimeters	liters	0.001
cubic centimeters	pints (U.S.)	2.113x10-3
cubic centimeters	quarts (U.S.)	1.057x10-3
cubic feet	cu cm	28,320
cubic feet	cu inches	1,728
cubic feet	cu meters	0.02832
cubic feet	cu yards	0.03704
cubic feet	gallons (U.S.)	7.48052
cubic feet	liters	28.32
cubic feet	pints (U.S.)	59.84
cubic feet	quarts (U.S.)	29.92
cubic feet/sec	million gals/day	0.646317
cubic feet/sec	gallons/min	448.831
cubic inches	cu cm	16.39
cubic inches	gallons	4.329x10-3
cubic inches	liters	0.01639
cubic meters	cu yards	1.308
cubic meters	gallons (U.S.)	264.2
cubic meters	liters	1,000
Dynes/sq cm	atmospheres	9.869x10-7
Dynes/sq cm	in of mercury at 0° C	2.953x10-5
Dynes/sq cm	in of water at 4° C	4.015x10-4
Dynes/sq cm	bars	1.0x10-4

TO CONVERT	INTO	MULTIPLY BY
feet	centimeters	30.48
feet	kilometers	3.048x10-4
feet	meters	0.3048
feet of water	atmospheres	0.02950
feet of water	in of mercury	0.8826
feet of water	kg/sq meter	304.8
feet of water	pounds/sq in	0.4335
Gallons	cu cm	3,785
Gallons	cu feet	0.1337
Gallons	cu inches	231
Gallons	cu meters	3.785x10-3
gallons	cu yards	4.951x10-3
Gallons	liters	3.785
gallons (Imp.)	gallons (U.S.)	1.20095
gallons (U.S.)	gallons (Imp.)	0.83267
gallons of water	pounds of water	8.3453
gallons/min	cu ft/sec	2.228x10-3
gallons/min	liters/sec	0.06308
gallons/min	cu ft/hr	8.0208
Hectares	acres	2.471
hectares	sq feet	1.076x10+5
Horsepower	Btu/min	42.44
horsepower	foot-lbs./min	33,000
horsepower	foot-lbs./sec	550
horsepower (metric)	horsepower (British)	0.9863
horsepower (British)	horsepower (metric)	1.014
horsepower	kg-calories/min	10.68
horsepower	kilowatts	0.7457
horsepower	watts	745.7
inches	centimeters	2.54
inches	meters	2.54x10-2
inches	miles	1.578x10-5
inches	millimeters	25.4
inches	mils	1,000
inches	yards	2.778x10-2
in of mercury	atmospheres	0.03342
in of mercury	feet of water	1.133
in of mercury	kg/sq cm	0.03453
in of mercury	kg/sq meter	345.3
in of mercury	pounds/sq ft	70.73
in of mercury	pounds/sq in	0.4912
in of water	atmospheres	2.458x10-3
in of water	inches of mercury	0.07355
in of water	kg/sq cm	2.540x10-3
in of water	ounces/sq in	0.5781
in of water	pounds/sq ft	5.204
in of water	pounds/sq in	0.03613

TO CONVERT	INTO	MULTIPLY BY
kilograms	pounds	2.205
kilograms/cu meter	pounds/cu ft	0.06243
kilograms/hectare	pounds/acre	0.8924
kilograms/sq cm	dynes	980,665
kilograms/sq cm	atmospheres	0.9678
kilograms/sq cm	feet of water	32.81
kilograms/sq cm	in of mercury	28.96
kilograms/sq cm	pounds/sq ft	2,048
kilograms/sq cm	pounds/sq in	14.22
kilograms/sq meter	atmospheres	9.678x10-5
kilograms/sq meter	bars	98.07x10-6
kilograms/sq meter	ft of water	3.281x10-3
kilograms/sq meter	in of mercury	2.896x10-3
kilograms/sq meter	pounds/sq ft	0.2048
kilograms/sq meter	pounds/sq in	1.422x10-3
kilometers	feet	3,281
kilometers	meters	1,000
kilometers	miles	0.6214
kilometers	yards	1,094
kilometers/hr	feet/min	54.68
kilometers/hr	feet/sec	0.9113
kiloPascals (kPa)	pounds/sq in	0.14503
kilowatts	BTU/min	56.92
kilowatts	horsepower	1.341
kilowatt-hrs	BTU	3,413
kilowatt-hrs	horsepower-hrs	1.341
liters	cu cm	1,000
liters	cu feet	0.03501
liters	cu inches	61.02
liters	cu meters	0.001
liters	cu yards	1.308x10-3
liters	gallons (U.S.)	0.2642
liters	pints (U.S.)	2.113
liters	quarts (U.S.)	1.057
liters/min	cu ft/sec	5.886x10-4
liters/min	gals/sec	4.403x10-3
liters/sec	gallons/min	15.852
liters/sec-sq meter	gallons/min-sq ft	1.4726
meters	centimeters	100
meters	feet	3.281
meters	inches	39.37
meters	kilometers	0.001
meters	miles (naut.)	5.396x10+4
meters	miles (stat.)	6.214x10+4
meters	millimeters	1,000
meters	yards	1.094
meters/min	miles/hr	0.03728

TO CONVERT	INTO	MULTIPLY BY
meters/sec	feet/min	196.8
meters/sec	feet/sec	3.281
meters/sec	kilometers/hr	3.6
meters/sec	kilometers/min	0.06
meters/sec	miles/hr	2.237
meters/sec	miles/min	0.03728
miles (statute)	feet	5,280
miles (statute)	inches	6.336x10+4
miles (statute)	kilometers	1.609
miles (statute)	meters	1,609
miles/hr	cm/sec	44.70
miles/hr	feet/min	88
miles/hr	feet/sec	1.467
milligrams/liter	parts/million	1
milliliters	liters	0.001
millimeters	centimeters	0.1
millimeters	inches	0.03937
millimeters	mils	39.37
million gals/day	cu ft/sec	1.54723
mils	centimeters	2.540x10-3
mils	inches	0.001
parts/million	pounds/million gal	8.345
pounds	dynes	44.4823x10+4
pounds	grams	453.5924
pounds	kilograms	0.4536
pounds	ounces	16
pounds of water	gallons	0.1198
pounds/cu ft	grams/cu cm	0.01602
pounds/cu ft	kg/cu meter	16.02
pounds/sq in	atmospheres	0.06804
pounds/sq in	bars	0.0689
pounds/sq in	ft of water	2.307
pounds/sq in	in of mercury	2.036
pounds/sq in	kPa	6.895
pounds/sq in	kg/sq meter	703.1
pounds/sq in	pounds/sq ft	144
quarts (liq.)	liters	0.9463
square miles	acres	640
square meters	square feet	10.7639
square meters	square inches	1,550
tonnes (metric)	kilograms	1,000
tonnes (metric)	pounds	2,205
tons (short)	kilograms	907.1848
tons (short)	pounds	2,000
tons (short)	tonnes (metric)	0.9078
yards	meters	0.9144

Blank Worksheets

To assist in data collection, the following templates may be used:

				SDI	Baselin	e Readin	gs Data (Collecti	on Shee	t		
		System Flow Rate	Pump Pressure	Filter Inlet Pressure	Filter Outlet Pressure	Mainline Control Valve Outlet Pressure	Appearance of Filter Outlet Flush Water	Block Valve Inlet Pressure	Block Valve # Block Valve Outlet Pressure	Tape Inlet Pressure	Tape Outlet Pressure	Appearance of Tape Flush Water
Imme after	ediately purchase:											
	Week 1											
	Week 2											
	Week 3											
9 S	Week 4											
i.	Week 5											
ad	Week 6											
<u>ح</u>	Week 7											
la l	Week 8											
ีเป็	Week 9											
\triangleleft	Week 10											
	Week 11											
	Week 12											
	Week 13											

	SDI E	Block Va	lve Base	eline I	Readin	gs
			Block Valve #			Appearance
		Block Valve Inlet Pressure	Block Valve Outlet Pressure	Tape Inlet Pressure	Tape Outlet Pressure	of Tape Flush Water
Imme after	ediately purchase:					
	Week 1					
	Week 2					
	Week 3					
SQ	Week 4					
lin	Week 5					
eac	Week 6					
ž	Week 7					
ual	Week 8					
Ct	Week 9					
A	Week 10					
	Week 11					
	Week 12					
	Week 13					

SDI Block Valve Baseline Readings

			Block Valve #			Appearance
		Block Valve Inlet Pressure	Block Valve Outlet Pressure	Tape Inlet Pressure	Tape Outlet Pressure	of Tape Flush Water
Imme after	ediately purchase:					
	Week 1					
	Week 2					
	Week 3					
S	Week 4					
lin	Week 5					
eac	Week 6					
Ĕ	Week 7					
na	Week 8					
Ţ	Week 9					
	Week 10					
	Week 11					
	Week 12					
	Week 13					

Blank Worksheets

	Irrigation Scheduling "Replace What's Used" Template												
Fie	ld		Zo	one	Acre	es	So	oil Type	/	Available V	Vater/Foot	or Meter_	
Day	Pump Pressure	Pump Flow	Application Rate *	Hours of Operation	Gross Water Applied	Net Water Applied **	Crop ET	"Banked Water"	Net Water Banked	Soil Moisture Status - Site 1	Soil Moisture Status - Site 2	Soil Moisture Status - Site 3	Soil Moisture Status - Site 4
1													
2													
3													
4													
5													
6													
7													
8													
9													
10													
11													
12													
13													
14													

To assist in data collection, the following template may be used:

*Inches per hour = Pump flow, GPM x .0022 / Acres Serviced; mm/hr = Pump flow, m3/hr x .1 / Hectares Serviced.

**Net Water Applied = Gross water applied (inches or millimeters) x 0.9 application efficiency.

Blank Worksheets

To assist in data collection, the following template may be used:

		Agri	icultu	ural	Irri	gatio	on Sch	eduli	ng	
Field Data	Summ	ery								
CIMIS Stat	tion									
Field Num	nber					Irri	gation Effic	iency		
Descriptio	on					Gro	oss Applica	tion		
Crop						Rat	e (in/nr, mi	m/nr)		_
Crop Seas	on					SCI	reduling Ba	1515		-
Stop Irriga	ation _					All	owed Depl	etion		
Soil Type						All	owed Deple	etion	.m)	
Maximum) (ft ma)					au Du	vidx. KOOLZ	one (in, m	im)	_
Irrigation	(IL, III) _					Ro	otzone (hh:	mm)		
Seasonal Ir	rigation	n Sched	ule			A	() () () (Chan an This Vera	Tatal ITT
Ending	Averag ETo (in/day, mm/day)	ge rear Rain (in/wk, mm/wk)	ETo (in/day, mm/day)	rear Rain (in/wk, mm/wk)	Kc	AVe ETc (in/day, mm/day)	Rootzone (feet, meters)	ek Runtime (HH:MM)	vs. Average Year (%)	to Date (in, mm)
	,,,									
Total Runtime	=	hh:mm =_	Inche	es Gross A	pplied					

Drip-Micro Irrigation Payback Wizard

THANK Y	OU for considering	the investm	ent in a DRIP-M	ICRO IRRIG	ATION SYSTEM.
REPORT					
Data you State: Neb Crop: Corr Acres: 160 Current Irr	entered: rraska) (65 hectares) igation System: Grav	ity			
		CURREN	IT SYSTEM	DRIP-MIC	RO SYSTEM
Ор	erating Costs	Per Acre	Per Hectare	Per Acre	Per Hectare
	Water:	\$104.48	\$258.07	\$79.51	\$196.39
	Energy:	\$199.20	\$492.02	\$298.80	\$738.04
	Fertilizer:	\$91.84	\$226.85	\$73.47	\$181.47
	Chemical:	\$61.30	\$151.45	\$49.04	\$121.13
	Irrigation Labor:	\$23.03	\$56.88	\$11.52	\$28.45
	Maintenance:	\$32.47	\$80.20	\$32.47	\$80.20
	Cultural:	\$7.46	\$18.43	\$3.73	\$9.21
	Equipment:	\$57.40	\$141.78	\$57.40	<u>\$141.78</u>
	Harvest Costs:	\$55.08	\$136.05	\$66.10	\$163.27
Rev	venue				
	Yield:	172.00 E	<u>3u/ac, 425 Bu/Ha</u>	206.40 B	u/ac. 510 Bu/Ha
	Revenue/Unit:	\$3.83		\$4.60	
Inv	estment				
	Grower net for ne	w system:	\$1000.00/ac, \$	2,470/ha	
	Cost Share:		\$300.00/ac, \$	741/ha	
	Net system inves	tment cost:	\$700.00/ac, \$	1,729/ha	
Est Est	imated payback imated additiona	period is a I acres tha	pproximately: It could be irri	2.79 yea gated: 50.4	rs I5 acres (20.3 hectares)
i his is accurat	an estimation tool under to ely calculate actual cost o	pical growing c f production, res	onditions using gover source use, crop yield	ds, crop quality,	or data and multiple assumptions, and should not be relied on or revenue.

SYSTEM INFORMATION

Toro Ag Solutions

PRECISE. EFFICIENT. PRACTICAL.

The Toro Company Ag Business Ag Dusiness 1588 N. Marshall Avenue, El Cajon, CA 82020-1523, USA Tel: +1 (877) 373-0087 or +1 (619) 596-2495 Fax: +1 (800) 892-1822 or +1 (619) 258-9973

toro.com

© 2018 The Toro Company ALT179

